Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Sur la variété des lois d'algèbres de Lie nilpotentes complexes

dc.contributor.authorAncochea Bermúdez, José María
dc.contributor.authorGoze, Michel
dc.date.accessioned2023-06-20T18:43:41Z
dc.date.available2023-06-20T18:43:41Z
dc.date.issued1989
dc.description.abstractLet N i be the variety of laws of i -dimensional nilpotent complex Lie algebras, N ˜ i the quotient space of orbits under the canonical action of the full linear group and U i ⊂N i the open subset composed of filiform Lie algebras. M. Vergne determined U 7 and showed that N i is reducible for i=7 and i≥11 . In a previous paper the authors proved that U ˜ 8 and N ˜ 8 are unions of points and lines. In this note they study N 9 and choose in U 9 four continuous families with two parameters. One may ask whether each of these families generates a component of N 9 . However, it seems that the authors may give a positive answer to the problem of reducibility for N i , 8≤i≤10 .
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21162
dc.identifier.issn0370-727X
dc.identifier.officialurlhttp://unica2.unica.it/~preside/index.php?id=22
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58447
dc.issue.number1-2
dc.journal.titleRendiconti del Seminario della Facoltà di Scienze dell'Università di Cagliari
dc.page.final48
dc.page.initial43
dc.publisherUniversità di Cagliari
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.554.3
dc.subject.keywordnilpotent complex Lie algebra
dc.subject.keywordfiliform Lie algebras
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleSur la variété des lois d'algèbres de Lie nilpotentes complexes
dc.typejournal article
dc.volume.number58
dspace.entity.typePublication
relation.isAuthorOfPublication8afd7745-e428-4a77-b1ff-813045b673fd
relation.isAuthorOfPublication.latestForDiscovery8afd7745-e428-4a77-b1ff-813045b673fd

Download

Collections