Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On form-preserving transformations for the time-dependent Schrodinger equation

dc.contributor.authorFinkel Morgenstern, Federico
dc.contributor.authorGonzález López, Artemio
dc.contributor.authorKamran, Niky
dc.contributor.authorRodríguez González, Miguel Ángel
dc.date.accessioned2023-06-20T20:08:44Z
dc.date.available2023-06-20T20:08:44Z
dc.date.issued1999-07
dc.description© 1999 American Institute of Physics. F.F., A.G.-L., and M.A.R. would like to acknowledge the partial financial support of the DGICYT under Grant No. PB95-0401. N.K. was supported in part by NSERC Grant No. 0GP0105490.
dc.description.abstractIn this paper we point out a close connection between the Darboux transformation and the group of point transformations which preserve the form of the time-dependent Schroumldinger equation (TDSE). In our main result, we prove that any pair of time-dependent real potentials related by a Darboux transformation for the TDSE may be transformed by a suitable point transformation into a pair of time-independent potentials related by a usual Darboux transformation for the stationary Schroumldinger equation. Thus, any (real) potential solvable via a time-dependent Darboux transformation can alternatively be solved by applying an appropriate form-preserving point transformation of the TDSE to a time-independent potential. The pre-eminent role of the latter type of transformations in the solution of the TDSE is illustrated with a family of quasi-exactly solvable time-dependent anharmonic potentials.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.sponsorshipNSERC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31405
dc.identifier.doi10.1063/1.532885
dc.identifier.issn0022-2488
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.532885
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59670
dc.issue.number7
dc.journal.titleJournal of mathematical physics
dc.language.isoeng
dc.page.final3274
dc.page.initial3268
dc.publisherAmerican Institute of Physics
dc.relation.projectIDPB95-0401
dc.relation.projectID0GP0105490
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleOn form-preserving transformations for the time-dependent Schrodinger equation
dc.typejournal article
dc.volume.number40
dcterms.references1. G. Darboux, C. R. Acad. Sci. Paris 94, 1456 (1882). 2. F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267 (1995). 3. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991). 4. G. Bluman and V. Shtelen, J. Phys. A 29, 4473 (1996). 5. V. G. Bagrov and B. F. Samsonov, Phys. Lett. A 210, 60 (1996). 6. P. G. L. Leach, J. Math. Phys. 18, 1902 (1977). 7. L. S. Brown, Phys. Rev. Lett. 66, 527 (1991). 8. G. Bluman, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 39, 238 (1980). 9. G. Bluman, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 43, 1259 (1983). 10. J. R. Ray, Phys. Rev. A 26, 729 (1982). 11. R. S. Kaushal and D. Parashar, Phys. Rev. A 55, 2610 (1997). 12. J. R. Burgan, M. R. Feix, E. Fijalkow, and A. Munier, Phys. Lett. A 74, 11 (1979). 13. M. Boiti, F. Pempinelli, A. K. Pogrebkov, and M. C. Polivanov, Inverse Probl. 7, 43 (1991). 14. V. G. Bagrov and B. F. Samsonov (preprint, quant-ph/9709040). 15. V. Singh, S. N. Biswas, and K. Datta, Phys. Rev. D 18, 1901 (1978). 16. A. V. Turbiner and A. G. Ushveridze, Phys. Lett. A 126, 181 (1987). 17. A. González-López, N. Kamran, and P. J. Olver, Commun. Math. Phys. 153, 117 (1993). 18. A. G. Ushveridze, Quasi-Exactly Solvable Models in Quantum Mechanics (IOP, Bristol, 1994). 19. Note that Eq. (139 cannot in general be solved in closed form if x1 is a polynomial in x of degree k.2. 20. P. Deift and E. Trubowitz, Commun. Pure Appl. Math. 32, 121 (1979). 21. J. M. Sparenberg and D. Baye, J. Phys. A 28, 5079 (1995). 22. Our choice of Q_(n11/2) differs from the one in Ref. 14 by the irrelevant constant factor i^n. 23. If n is even Q_(n11/2) is nonzero on the whole real axis. 24. A comprehensive review of these methods is beyond the scope of this paper; see Refs. 26– 30, and references therein for a detailed treatment. 25. Some families of time-independent complex potentials which are quasi-exactly solvable have been recently proposed in the literature (Ref. 31). 26. W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954). 27. J. Wei and E. Norman, J. Math. Phys. 4, 575 (1963). 28. D. R. Truax, J. Math. Phys. 22, 1959 (1981). 29. C. M. Cheng and P. C. W. Fung, J. Phys. A 21, 4115 (1988). 30. S. Zhang and F. Li, J. Phys. A 24, 6143 (1996). 31. C. M. Bender and S. Boettcher (preprint, physics/9801007).
dspace.entity.typePublication
relation.isAuthorOfPublication207092a4-0443-4336-a037-15936f8acc25
relation.isAuthorOfPublication7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc
relation.isAuthorOfPublicationd781a665-7ef6-44e0-a0da-81f722f1b8ad
relation.isAuthorOfPublication.latestForDiscovery207092a4-0443-4336-a037-15936f8acc25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Finkel32libre.pdf
Size:
460 KB
Format:
Adobe Portable Document Format

Collections