Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Steiner symmetrization for anisotropic quasilinear equations via partial discretization

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier (Gauthier-Villars),
Citations
Google Scholar

Citation

Abstract

In this paper we obtain comparison results for the quasilinear equation −_p,xu−uyy = f with homogeneous Dirichlet boundary conditions by Steiner rearrangement in variable x, thus solving a long open problem. In fact, we study a broader class of anisotropic problems. Our approach is based on a finite-differences discretization in y, and the proof of a comparison principle for the discrete version of the auxiliary problem AU − Uyy ≤ R s0 f, where AU = (n!1/nn s1/n′)p(−Uss)p−1. We show that this operator is T-accretive in L1. We extend our results for −_p,x to general operators of the form −div(a(|∇xu|)∇xu) where a is non-decreasing and behaves like | ・ |p−2 at infinity.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections