Steiner symmetrization for anisotropic quasilinear equations
via partial discretization
Loading...
Official URL
Full text at PDC
Publication date
2021
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier (Gauthier-Villars),
Citation
Abstract
In this paper we obtain comparison results for the quasilinear equation −_p,xu−uyy = f with homogeneous Dirichlet boundary conditions by Steiner rearrangement in variable x, thus solving a long open problem. In fact, we study a broader class of anisotropic problems. Our approach is based on a finite-differences discretization in y, and the proof of a comparison principle for the discrete version of the auxiliary problem AU − Uyy ≤ R s0 f, where AU = (n!1/nn s1/n′)p(−Uss)p−1. We show that this operator is T-accretive in L1. We extend our results for −_p,x to general operators of the form −div(a(|∇xu|)∇xu) where a is non-decreasing and behaves like | ・ |p−2 at infinity.