Steiner symmetrization for anisotropic quasilinear equations
via partial discretization
dc.contributor.author | Brock, F. | |
dc.contributor.author | Díaz, J. I. | |
dc.contributor.author | Gómez-Castro, D. | |
dc.contributor.author | Mercaldo, A. | |
dc.date.accessioned | 2023-06-17T08:28:45Z | |
dc.date.available | 2023-06-17T08:28:45Z | |
dc.date.issued | 2021-03 | |
dc.description.abstract | In this paper we obtain comparison results for the quasilinear equation −_p,xu−uyy = f with homogeneous Dirichlet boundary conditions by Steiner rearrangement in variable x, thus solving a long open problem. In fact, we study a broader class of anisotropic problems. Our approach is based on a finite-differences discretization in y, and the proof of a comparison principle for the discrete version of the auxiliary problem AU − Uyy ≤ R s0 f, where AU = (n!1/nn s1/n′)p(−Uss)p−1. We show that this operator is T-accretive in L1. We extend our results for −_p,x to general operators of the form −div(a(|∇xu|)∇xu) where a is non-decreasing and behaves like | ・ |p−2 at infinity. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/73984 | |
dc.identifier.doi | 10.1016/j.anihpc.2020.07.005 | |
dc.identifier.issn | 0294-1449 | |
dc.identifier.officialurl | https://doi.org/10.1016/j.anihpc.2020.07.005 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/7241 | |
dc.issue.number | 2 | |
dc.journal.title | Annales de l'Institut Henri Poincare (C) Non Linear Analysis | |
dc.language.iso | eng | |
dc.page.final | 368 | |
dc.page.initial | 347 | |
dc.publisher | Elsevier (Gauthier-Villars), | |
dc.relation.projectID | MTM2017-85449-P; PGC2018-098440-B-I00 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.9 | |
dc.subject.cdu | 517.95 | |
dc.subject.keyword | Steiner symmetrization | |
dc.subject.keyword | Anisotropic quasilinear equations | |
dc.subject.keyword | Partial discretization | |
dc.subject.keyword | T-accretive operators | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Steiner symmetrization for anisotropic quasilinear equations via partial discretization | |
dc.type | journal article | |
dc.volume.number | 38 | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1