Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quantum entanglement produced in the formation of a black hole

dc.contributor.authorMartin Martinez, Eduardo
dc.contributor.authorGaray Elizondo, Luis Javier
dc.contributor.authorLeón, Juan
dc.date.accessioned2023-06-20T03:50:04Z
dc.date.available2023-06-20T03:50:04Z
dc.date.issued2010-09-22
dc.description© 2010 The American Physical Society. The authors want to thank Carlos Barceló for useful discussions. This work was supported by the Spanish MICINN Projects FIS2008-05705/FIS, FIS2008-06078- C03-03, the CAM research consortium QUITEMAD S2009/ESP-1594, and the Consolider-Ingenio 2010 Program CPAN (CSD2007-00042). E. M-M. was partially supported by a CSIC JAE-PREDOC2007 grant.
dc.description.abstractA field in the vacuum state, which is in principle separable, can evolve to an entangled state in a dynamical gravitational collapse. We will study, quantify, and discuss the origin of this entanglement, showing that it could even reach the maximal entanglement limit for low frequencies or very small black holes, with consequences in micro-black hole formation and the final stages of evaporating black holes. This entanglement provides quantum information resources between the modes in the asymptotic future (thermal Hawking radiation) and those which fall to the event horizon. We will also show that fermions are more sensitive than bosons to this quantum entanglement generation. This fact could be helpful in finding experimental evidence of the genuine quantum Hawking effect in analog models.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipSpanish MICINN
dc.description.sponsorshipCPAN
dc.description.sponsorshipCSIC through the JAE predoc program
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29774
dc.identifier.doi10.1103/PhysRevD.82.064028
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.82.064028
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44525
dc.issue.number6
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDQUITEMAD-CM (S2009/ESP-1594)
dc.relation.projectIDFIS2008-05705/FIS
dc.relation.projectIDFIS2008-06078-C03-03
dc.relation.projectIDCSD2007-00042
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordAstronomy & astrophysics
dc.subject.keywordPhysics
dc.subject.keywordparticles & fields
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleQuantum entanglement produced in the formation of a black hole
dc.typejournal article
dc.volume.number82
dcterms.references[1] P. M. Alsing and G. J. Milburn, Phys. Rev. Lett. 91, 180404 (2003). [2] I. Fuentes-Schuller and R. B. Mann, Phys. Rev. Lett. 95, 120404 (2005). [3] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Phys. Rev. A 74, 032326 (2006). [4] J. León and E. Martín-Martínez, Phys. Rev. A 80, 012314 (2009). [5] E. Martín-Martínez and J. León, Phys. Rev. A 80, 042318 (2009). [6] E. Martín-Martínez and J. León, Phys. Rev. A 81, 032320 (2010). [7] E. Martín-Martıínez and J. León, Phys. Rev. A 81, 052305 (2010). [8] E. Martín-Martıínez, L. J. Garay, and J. León, Phys. Rev. D 82, 064006 (2010). [9] J. L. Ball, I. Fuentes-Schuller, and F. P. Schuller, Phys. Lett. A 359, 550 (2006). [10] I. Fuentes, R. B. Mann, E. Martín-Martıínez, and S. Moradi, Phys. Rev. D 82, 045030 (2010). [11] S. W. Hawking, Nature (London) 248, 30 (1974). [12] R. Balbinot, A. Fabbri, S. Fagnocchi, A. Recati, and I. Carusotto, Phys. Rev. A 78, 021603 (2008). [13] A. Fabbri and J. Navarro-Salas, Modeling Black Hole Evaporation (World Scientific, Singapore, 2005). [14] R. Schützhold and W. G. Unruh, Phys. Rev. D 81, 124033 (2010). [15] S. Fagnocchi, J. Phys. Conf. Ser. 222, 012036 (2010). [16] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981). [17] B. Horstmann, B. Reznik, S. Fagnocchi, and J. I. Cirac, Phys. Rev. Lett. 104, 250403 (2010). [18] B. Reznik, A. Retzker, and J. Silman, Phys. Rev. A 71, 042104 (2005). [19] J. Schliemann, J. I. Cirac, M. Kús, M. Lewenstein, and D. Loss, Phys. Rev. A 64, 022303 (2001). [20] G. E. Volovik, The Universe in a Helium Droplet (Oxford University Press, New York, 2003).
dspace.entity.typePublication
relation.isAuthorOfPublication5638c18d-1c35-40d2-8b77-eb558c27585e
relation.isAuthorOfPublication.latestForDiscovery5638c18d-1c35-40d2-8b77-eb558c27585e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garay11.pdf
Size:
146.82 KB
Format:
Adobe Portable Document Format

Collections