Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quantum entanglement produced in the formation of a black hole

Loading...
Thumbnail Image

Full text at PDC

Publication date

2010

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Physical Soc
Citations
Google Scholar

Citation

Abstract

A field in the vacuum state, which is in principle separable, can evolve to an entangled state in a dynamical gravitational collapse. We will study, quantify, and discuss the origin of this entanglement, showing that it could even reach the maximal entanglement limit for low frequencies or very small black holes, with consequences in micro-black hole formation and the final stages of evaporating black holes. This entanglement provides quantum information resources between the modes in the asymptotic future (thermal Hawking radiation) and those which fall to the event horizon. We will also show that fermions are more sensitive than bosons to this quantum entanglement generation. This fact could be helpful in finding experimental evidence of the genuine quantum Hawking effect in analog models.

Research Projects

Organizational Units

Journal Issue

Description

© 2010 The American Physical Society. The authors want to thank Carlos Barceló for useful discussions. This work was supported by the Spanish MICINN Projects FIS2008-05705/FIS, FIS2008-06078- C03-03, the CAM research consortium QUITEMAD S2009/ESP-1594, and the Consolider-Ingenio 2010 Program CPAN (CSD2007-00042). E. M-M. was partially supported by a CSIC JAE-PREDOC2007 grant.

Unesco subjects

Keywords

Collections