Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Introducción al cálculo fraccionario y a los modelos de crecimiento tumoral clásicos y fraccionarios: simulaciones numéricas en el entorno del cálculo fraccionario

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2020

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

Contexto histórico y antecedentes del cálculo fraccionario. Definiciones más relevantes del cálculo fraccionario y su aplicación en la resolución de ecuaciones diferenciales fraccionarias. Problema de Abel. Definición de derivada fraccionaria de Grünwald-Letnikov. Aplicación del cálculo fraccionario en problemas de difusión. Aplicación de cálculo fraccionario en fractales, conjuntos de Julia y de Mandelbrot. Simulación numérica del atractor de Lorenz y el atractor de Rössler y su forma fraccionaria. Simulaciones numéricas de ecuaciones en diferencias y caos. Aplicaciones físicas del cálculo fraccionario.
Historical context and background of fractional calculation. Most relevant definitions of the fractional calculation and its application in the resolution of fractional differential equations. Abel's problem. Definition of fractional derivative of Grünwald-Letnikov. Application of fractional calculus in diffusion problems. Application of fractional calculation in fractals, Julia and Mandelbrot sets. Numerical simulation of the Lorenz attractor and the Rössler attractor. Numerical simulations of equations in differences and chaos. Physical applications of fractional calculation.

Research Projects

Organizational Units

Journal Issue

Description

Keywords