Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Radial continuous rotation invariant valuations on star bodies

Loading...
Thumbnail Image

Full text at PDC

Publication date

2016

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Villanueva Díez, I. «Radial Continuous Rotation Invariant Valuations on Star Bodies». Advances in Mathematics, vol. 291, marzo de 2016, pp. 961-81. DOI.org (Crossref), https://doi.org/10.1016/j.aim.2015.12.030.

Abstract

We characterize the positive radial continuous and rotation invariant valuations V defined on the star bodies of Rn as the applications on star bodies which admit an integral representation with respect to the Lebesgue measure. That is,V(K)=∫Sn−1θ(ρK)dm, where θ is a positive continuous function, ρK is the radial function associated to K and m is the Lebesgue measure on Sn−1. As a corollary, we obtain that every such valuation can be uniformly approximated on bounded sets by a linear combination of dual quermassintegrals.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections