Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Radial continuous rotation invariant valuations on star bodies

Loading...
Thumbnail Image

Full text at PDC

Publication date

2016

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Villanueva Díez, I. «Radial Continuous Rotation Invariant Valuations on Star Bodies». Advances in Mathematics, vol. 291, marzo de 2016, pp. 961-81. DOI.org (Crossref), https://doi.org/10.1016/j.aim.2015.12.030.

Abstract

We characterize the positive radial continuous and rotation invariant valuations V defined on the star bodies of Rn as the applications on star bodies which admit an integral representation with respect to the Lebesgue measure. That is,V(K)=∫Sn−1θ(ρK)dm, where θ is a positive continuous function, ρK is the radial function associated to K and m is the Lebesgue measure on Sn−1. As a corollary, we obtain that every such valuation can be uniformly approximated on bounded sets by a linear combination of dual quermassintegrals.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections