Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Kernel Density Estimation for the Interpretation of Seismic Big Data in Tectonics Using QGIS: The Türkiye–Syria Earthquakes (2023)

dc.contributor.authorAmador Luna, David
dc.contributor.authorAlonso Chaves, Francisco M.
dc.contributor.authorFernández Rodríguez, Carlos
dc.date.accessioned2025-01-22T17:21:22Z
dc.date.available2025-01-22T17:21:22Z
dc.date.issued2024-10-16
dc.description.abstractNumerous studies have utilized remote sensing techniques to analyze seismic data in active areas. Point density techniques, widely used in remote sensing, examine the spatial distribution of point clouds related to specific variables. Applying these techniques to complex tectonic settings, such as the East Anatolian Fault Zone, helps identify major active fractures using both surface and deep information. This study employed kernel density estimation (KDE) to compare two distinct point-cloud populations from the seismic event along the Türkiye–Syria border on 6 February 2023, providing insights into the main active orientations supporting the Global Tectonics framework. This study considered two populations of seismic foci point clouds containing over 40,000 events, recorded by the Turkish Disaster and Emergency Management Authority (AFAD) and Kandilli Observatory and Earthquake Research Institute (KOERI). These populations were divided into two datasets: crude and relocated-filtered. Kernel density analysis demonstrated that both datasets yielded similar geological interpretations. The high-density cores of both datasets perfectly matched, exhibiting identical structures consistent with geological knowledge. Areas with a minimal concentration of earthquakes at depth were also identified, separating different crustal strength levels.
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad de Huelva
dc.description.statuspub
dc.identifier.citationAmador Luna, D., Alonso-Chaves, F. M., & Fernández, C. (2024). Kernel density estimation for the interpretation of seismic big data in tectonics using qgis: The türkiye–syria earthquakes(2023). Remote Sensing, 16(20), 3849
dc.identifier.doi10.3390/rs16203849
dc.identifier.essn2072-4292
dc.identifier.officialurlhttps://doi.org/10.3390/rs16203849
dc.identifier.relatedurlhttps://www.mdpi.com/2072-4292/16/20/3849
dc.identifier.urihttps://hdl.handle.net/20.500.14352/115664
dc.issue.number3849
dc.journal.titleRemote Sensing
dc.language.isoeng
dc.publisherMDPI
dc.relation.projectIDEPIT20/00832
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu550.34(560)
dc.subject.keywordKernel density estimation;
dc.subject.keywordSeismic big data
dc.subject.keywordTürkiye–Syria earthquakes (2023)
dc.subject.keywordTectonic interpretation
dc.subject.ucmSismología (Geología)
dc.subject.unesco2506.20 Geología Estructural
dc.subject.unesco2507.05 Sismología y Prospección Sísmica
dc.titleKernel Density Estimation for the Interpretation of Seismic Big Data in Tectonics Using QGIS: The Türkiye–Syria Earthquakes (2023)
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number16
dspace.entity.typePublication
relation.isAuthorOfPublication30782bfb-a69a-414e-b90f-01c04a54467c
relation.isAuthorOfPublication.latestForDiscovery30782bfb-a69a-414e-b90f-01c04a54467c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kernel Density Estimation for the Interpretation.pdf
Size:
11.16 MB
Format:
Adobe Portable Document Format

Collections