Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Characteristically nilpotent extensions of nilradicals of solvable rigid laws

Loading...
Thumbnail Image

Full text at PDC

Publication date

2001

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Hadronic Press
Citations
Google Scholar

Citation

Abstract

A Lie algebra g is called characteristically nilpotent if its algebra of derivations is nilpotent. The authors construct the examples of (2m+2)-dimensional characteristically nilpotent Lie algebras g2m+2 with characteristic sequence c(g2m+2) equal to (2m, 1, 1) (c(g) of a nilpotent Lie algebra g is maximum in a lexicographic ordering of the sequence of dimensions of the Jordan blocks of adX, X 2 g−[g, g]). The algebra g2m+2 is obtained by means of three consecutive one-dimensional central extensions e1(L2m−1), e1(e1(L2m−1)), g2m+2 of the filiform Lie algebra L2m−1. L2m−1 is defined by its basis e1, . . . , e2m−1 and commutation relations [e1, ei] = ei+1, 2 i 2m−2. On the other hand the semi-direct sum t(m,m−1) = Ce1(e1(L2m−1)) of Lie algebras is considered such that t(m,m−1) is a solvable, rigid, complete Lie algebra. Thus the algebra g2m+2 is a one-dimensional central extension of the nilradical of t(m,m−1).

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections