Characteristically nilpotent extensions of nilradicals of solvable rigid laws
dc.contributor.author | Ancochea Bermúdez, José María | |
dc.contributor.author | Campoamor Stursberg, Otto-Rudwig | |
dc.date.accessioned | 2023-06-20T18:42:57Z | |
dc.date.available | 2023-06-20T18:42:57Z | |
dc.date.issued | 2001 | |
dc.description.abstract | A Lie algebra g is called characteristically nilpotent if its algebra of derivations is nilpotent. The authors construct the examples of (2m+2)-dimensional characteristically nilpotent Lie algebras g2m+2 with characteristic sequence c(g2m+2) equal to (2m, 1, 1) (c(g) of a nilpotent Lie algebra g is maximum in a lexicographic ordering of the sequence of dimensions of the Jordan blocks of adX, X 2 g−[g, g]). The algebra g2m+2 is obtained by means of three consecutive one-dimensional central extensions e1(L2m−1), e1(e1(L2m−1)), g2m+2 of the filiform Lie algebra L2m−1. L2m−1 is defined by its basis e1, . . . , e2m−1 and commutation relations [e1, ei] = ei+1, 2 i 2m−2. On the other hand the semi-direct sum t(m,m−1) = Ce1(e1(L2m−1)) of Lie algebras is considered such that t(m,m−1) is a solvable, rigid, complete Lie algebra. Thus the algebra g2m+2 is a one-dimensional central extension of the nilradical of t(m,m−1). | en |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20939 | |
dc.identifier.issn | 0741-9937 | |
dc.identifier.officialurl | http://www.hadronicpress.com/AGGVOL/ISSIndex.php?VOL=18&Issue=4 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58408 | |
dc.issue.number | 4 | |
dc.journal.title | Algebras, Groups and Geometries | |
dc.page.final | 399 | |
dc.page.initial | 393 | |
dc.publisher | Hadronic Press | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 512.813.52 | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Characteristically nilpotent extensions of nilradicals of solvable rigid laws | en |
dc.type | journal article | |
dc.volume.number | 18 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8afd7745-e428-4a77-b1ff-813045b673fd | |
relation.isAuthorOfPublication.latestForDiscovery | 8afd7745-e428-4a77-b1ff-813045b673fd |