Light-driven transport of plasmonic nanoparticles on demand

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Nature publishing group
Google Scholar
Research Projects
Organizational Units
Journal Issue
Laser traps provide contactless manipulation of plasmonic nanoparticles (NPs) boosting the development of numerous applications in science and technology. The known trapping configurations allow immobilizing and moving single NPs or assembling them, but they are not suitable for massive optical transport of NPs along arbitrary trajectories. Here, we address this challenging problem and demonstrate that it can be handled by exploiting phase gradients forces to both confine and propel the NPs. The developed optical manipulation tool allows for programmable transport routing of NPs to around, surround or impact on objects in the host environment. An additional advantage is that the proposed confinement mechanism works for off-resonant but also resonant NPs paving the way for transport with simultaneous heating, which is of interest for targeted drug delivery and nanolithography. These findings are highly relevant to many technological applications including micro/nano-fabrication, micro-robotics and biomedicine.
© The Author(s) 2016. © Nature publishing group. The Spanish Ministerio de Economía y Competitividad is acknowledged for the project TEC2014-57394-P.
1. Maragò, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G. & Ferrari, A. C. Optical trapping and manipulation of nanostructures. Nature Nanotech. 8, 807–19 (2013). 2. Urban, A. S. et al. Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives. Nanoscale 6, 4458–74 (2014). 3. Lehmuskero, A., Johansson, P., Rubinsztein-Dunlop, H., Tong, L. & Käll, M. Laser Trapping of Colloidal Metal Nanoparticles. ACS Nano 9, 3453–3469 (2015). 4. Fedoruk, M., Meixner, M., Carretero-Palacios, S., Lohmüller, T. & Feldmann, J. Nanolithography by Plasmonic Heating and Optical Manipulation of Gold Nanoparticles. ACS Nano 7, 7648–7653 (2013). 5. Lin, L. et al. Bubble-Pen Lithography. Nano Lett. acs.nanolett.5b04524 (2015). 6. Ohlinger, A., Deak, A., Lutich, A. A. & Feldmann, J. Optically trapped gold nanoparticle enables listening at the microscale. Phys. Rev. Lett. 108, 1–5 (2012). 7. Bendix, P. M., Reihani, S. N. S. & Oddershede, L. B. Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers. ACS Nano 4, 2256–2262 (2010). 8. Sanchot, A. et al. Plasmonic nanoparticle networks for light and heat concentration. ACS Nano 6, 3434–3440 (2012). 9. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nature Phot. 1, 641–648 (2007). 10. Svoboda, K. & Block, S. M. Optical trapping of metallic Rayleigh particles. Optics Lett. 19, 930–932 (1994). 11. Ito, S., Yoshikawa, H. & Masuhara, H. Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates. Appl. Phys. Lett. 78, 2566–2568 (2001). 12. Urban, A. S., Pfeiffer, T., Fedoruk, M., Lutich, A. A. & Feldmann, J. Single Step Injection of Gold Nanoparticles through Phospholipid Membranes. ACS Nano 3585–3590 (2011). 13. Delcea, M. et al. Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells. ACS Nano 6, 4169–4180 (2012). 14. Roichman, Y., Sun, B., Roichman, Y., Amato-Grill, J. & Grier, D. Optical Forces Arising from Phase Gradients. Phys. Rev. Lett. 100, 8–11 (2008). 15. Sun, B., Roichman, Y. & Grier, D. G. Theory of holographic optical trapping. Opt. Express 16, 15765–15776 (2008). 16. Albaladejo, S., Marques, M. I., Laroche, M. & Saenz, J. J. Scattering forces from the curl of the spin angular momentum of a light field. Phys. Rev. Lett. 102, 1–4 (2009). 17. Ruffner, D. B. & Grier, D. G. Comment on: Scattering Forces from the Curl of the Spin Angular Momentum of a Light Field. Phys. Rev. Lett. 111, 059301 (2013). 18. Rodrigo, J. A. & Alieva, T. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica 2, 812–815 (2015). 19. Lehmuskero, A., Li, Y., Johansson, P. & Käll, M. Plasmonic particles set into fast orbital motion by an optical vortex beam. Opt. Express 22, 4349–4356 (2014). 20. Rubinsztein-Dunlop, H., Nieminen, T. a., Friese, M. E. J. & Heckenberg, N. R. Optical Trapping of Absorbing Particles. Adv. Quantum Chem. 30, 469–492 (1998). 21. Curtis, J. E. & Grier, D. G. Structure of optical vortices. Phys. Rev. Lett. 90, 133901 (2003). 22. Yan, Z., Sajjan, M. & Scherer, N. F. Fabrication of a Material Assembly of Silver Nanoparticles Using the Phase Gradients of Optical Tweezers. Phys. Rev. Lett. 114, 1–5 (2015). 23. Rodrigo, J. A., Alieva, T., Abramochkin, E. & Castro, I. Shaping of light beams along curves in three dimensions. Opt. Express 21, 20544–20555 (2013). 24. Dienerowitz, M., Mazilu, M., Reece, P. J., Krauss, T. F. & Dholakia, K. Optical vortex trap for resonant confinement of metal nanoparticles. Opt. Express 16, 4991–4999 (2008). 25. Hobby, J. D. Smooth, easy to compute interpolating splines. Discrete Comput. Geom. 1, 123–140 (1986).