Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Explosion de solutions d'équations paraboliques semilinéaires supercritiques

Loading...
Thumbnail Image

Full text at PDC

Publication date

1994

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

The authors consider blow-up for the equation (1) ut=Δu+up (x∈RN, t>0), where p>1 and N>1. For N>11and (2) p>(N−2(N−1)1/2)/(N−4−2(N−1)1/2)=p1(N) there exist some radial positive solutions that blow up at x=0, t=T<∞. Moreover, (3) limsup(T−t)1/(p−1)u(0,t)=∞ (t→T). Similar problems were investigated in detail in the book by A. A. Samarskiĭ et al. [Peaking modes in problems for quasilinear parabolic equations (Russian), "Nauka'', Moscow, 1987] and in other works where blow-up was established under conditions of the type 1<p<p2(N) with p2<p1. For corresponding solutions the lim sup in (3) is bounded. The authors give some arguments which show the following. The true threshold p that separates solutions with bounded and unbounded limit (3) should have the form p=p1(N).

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections