Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Explosion de solutions d'équations paraboliques semilinéaires supercritiques

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T18:49:34Z
dc.date.available2023-06-20T18:49:34Z
dc.date.issued1994
dc.description.abstractThe authors consider blow-up for the equation (1) ut=Δu+up (x∈RN, t>0), where p>1 and N>1. For N>11and (2) p>(N−2(N−1)1/2)/(N−4−2(N−1)1/2)=p1(N) there exist some radial positive solutions that blow up at x=0, t=T<∞. Moreover, (3) limsup(T−t)1/(p−1)u(0,t)=∞ (t→T). Similar problems were investigated in detail in the book by A. A. Samarskiĭ et al. [Peaking modes in problems for quasilinear parabolic equations (Russian), "Nauka'', Moscow, 1987] and in other works where blow-up was established under conditions of the type 1<p<p2(N) with p2<p1. For corresponding solutions the lim sup in (3) is bounded. The authors give some arguments which show the following. The true threshold p that separates solutions with bounded and unbounded limit (3) should have the form p=p1(N).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22678
dc.identifier.issn0764-4442
dc.identifier.officialurlhttp://gallica.bnf.fr/ark:/12148/bpt6k57326058/f145.image
dc.identifier.relatedurlhttp://gallica.bnf.fr
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58711
dc.issue.number2
dc.journal.titleComptes Rendus de l'Académie des Sciences. Série I. Mathématique
dc.language.isofra
dc.page.final145
dc.page.initial141
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu517.956.4
dc.subject.cdu539.2
dc.subject.keywordSupercritical semilinear parabolic equations
dc.subject.keywordradial and positive solutions
dc.subject.keywordblow up
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleExplosion de solutions d'équations paraboliques semilinéaires supercritiques
dc.typejournal article
dc.volume.number319
dcterms.referencesBombieri, E. De Giorgi et E. Giusti, Minimal cones and the Bernstein problem, Inventiones Math., 7, 1969, p. 243-268 Y. Giga et R. V. Kohn, Characterizing blow up using similarity variables, Indiana Univ. Math. J., 36, 1987, p.1-40 M. A. Herrero et J.J.L. Velázquez, A blow up result for semilinear heat equations in the supercritical case, preprint J.J.L. Velázquez, Curvature blow up in perturbations of minimal cones evolving by mean curvature flow, preprint
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero76.pdf
Size:
279.78 KB
Format:
Adobe Portable Document Format

Collections