Explosion de solutions d'équations paraboliques semilinéaires supercritiques
dc.contributor.author | Herrero, Miguel A. | |
dc.contributor.author | Velázquez, J.J. L. | |
dc.date.accessioned | 2023-06-20T18:49:34Z | |
dc.date.available | 2023-06-20T18:49:34Z | |
dc.date.issued | 1994 | |
dc.description.abstract | The authors consider blow-up for the equation (1) ut=Δu+up (x∈RN, t>0), where p>1 and N>1. For N>11and (2) p>(N−2(N−1)1/2)/(N−4−2(N−1)1/2)=p1(N) there exist some radial positive solutions that blow up at x=0, t=T<∞. Moreover, (3) limsup(T−t)1/(p−1)u(0,t)=∞ (t→T). Similar problems were investigated in detail in the book by A. A. Samarskiĭ et al. [Peaking modes in problems for quasilinear parabolic equations (Russian), "Nauka'', Moscow, 1987] and in other works where blow-up was established under conditions of the type 1<p<p2(N) with p2<p1. For corresponding solutions the lim sup in (3) is bounded. The authors give some arguments which show the following. The true threshold p that separates solutions with bounded and unbounded limit (3) should have the form p=p1(N). | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22678 | |
dc.identifier.issn | 0764-4442 | |
dc.identifier.officialurl | http://gallica.bnf.fr/ark:/12148/bpt6k57326058/f145.image | |
dc.identifier.relatedurl | http://gallica.bnf.fr | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58711 | |
dc.issue.number | 2 | |
dc.journal.title | Comptes Rendus de l'Académie des Sciences. Série I. Mathématique | |
dc.language.iso | fra | |
dc.page.final | 145 | |
dc.page.initial | 141 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.956.4 | |
dc.subject.cdu | 539.2 | |
dc.subject.keyword | Supercritical semilinear parabolic equations | |
dc.subject.keyword | radial and positive solutions | |
dc.subject.keyword | blow up | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Explosion de solutions d'équations paraboliques semilinéaires supercritiques | |
dc.type | journal article | |
dc.volume.number | 319 | |
dcterms.references | Bombieri, E. De Giorgi et E. Giusti, Minimal cones and the Bernstein problem, Inventiones Math., 7, 1969, p. 243-268 Y. Giga et R. V. Kohn, Characterizing blow up using similarity variables, Indiana Univ. Math. J., 36, 1987, p.1-40 M. A. Herrero et J.J.L. Velázquez, A blow up result for semilinear heat equations in the supercritical case, preprint J.J.L. Velázquez, Curvature blow up in perturbations of minimal cones evolving by mean curvature flow, preprint | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1