Q(M) and the depolarization index scalar metrics
dc.contributor.author | Espinosa Luna, Rafael | |
dc.contributor.author | Atondo Rubio, Gelacio | |
dc.contributor.author | Bernabeu Martínez, Eusebio | |
dc.date.accessioned | 2023-06-20T10:45:27Z | |
dc.date.available | 2023-06-20T10:45:27Z | |
dc.date.issued | 2008-04-01 | |
dc.description | © 2008 Optical Society of America. R. Espinosa-Luna expresses his gratitude to CONACYT (project 46969-F), to CONCYTEG (05-04-K117-066-A02), and to Grupo Santander (program Visitantes Distinguidos at the Universidad Complutense de Madrid 2006) for the support provided for the realization of this work. | |
dc.description.abstract | A depolarization scalar metric for Mueller matrices, named Q(M) , is derived from the degree of polarization. Q(M) has been recently reported, and it has been deduced from the nine bilinear constraints between the sixteen elements of the Mueller–Jones matrix. We discuss the relations between Q(M) and the depolarization index. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Consejo Nacional de Ciencia y Tecnología (CONACYT), México | |
dc.description.sponsorship | Consejo de Ciencia y Tecnologia del Estado de Guanajuato (CONCYTEG), México | |
dc.description.sponsorship | Grupo Santander (España) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/26260 | |
dc.identifier.doi | 10.1364/AO.47.001575 | |
dc.identifier.issn | 1559-128X | |
dc.identifier.officialurl | http://dx.doi.org/10.1364/AO.47.001575 | |
dc.identifier.relatedurl | http://www.opticsinfobase.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51159 | |
dc.issue.number | 10 | |
dc.journal.title | Applied Optics | |
dc.language.iso | eng | |
dc.page.final | 1580 | |
dc.page.initial | 1575 | |
dc.publisher | The Optical Society Of America | |
dc.relation.projectID | 46969-F | |
dc.relation.projectID | 05-04-K117-066-A02 | |
dc.relation.projectID | Visitantes Distinguidos at the Universidad Complutense de Madrid | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Mueller Matrices | |
dc.subject.keyword | Polarization | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Q(M) and the depolarization index scalar metrics | |
dc.type | journal article | |
dc.volume.number | 47 | |
dcterms.references | 1. J. J. Gil and E. Bernabéu, “A depolarization criterion in Mueller matrices”, J. Mod. Opt. 32, 259-261 (1985). 2. J. J. Gil and E. Bernabéu, “Depolarization and polarization indexes of an optical system”, J. Mod. Opt. 33, 185-189 (1986). 3. D. G. M. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix”, J. Opt. Soc. Am. A 11, 2305-2319 (1994). 4. S. R. Cloude, “Group theory and polarization algebra”, Optik 75, 26-36 (1986). 5. B. DeBoo, J. Sasian, and R. Chipman, “Degree of polarization surfaces and maps for analysis of depolarization”, Opt. Express 12, 4941-4958 (2004). 6. R. Chipman, “Depolarization index and the average degree of polarization”, Appl. Opt. 44, 2490-2495 (2005). 7. B. DeBoo, J. M. Sasian, and R. Chipman, “Depolarization of diffusely reflecting man-made objects”, Appl. Opt. 44, 5434-5445 (2005). 8. E. Wolfe and R. A. Chipman, “Polarimetric characterization of liquid-crystal-on-silicon panels”, Appl. Opt. 45, 1688-1703(2006). 9. S. Y. Lu and R. A. Chipman, “Mueller matrices and the degree of polarization”, Opt. Commun. 146, 11-14 (1998). 10. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998). 11. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1989). 12. J. J. Gil, “polarimetric characterization of light and media”, Eur. Phys. J. Appl. Phys. 40, 1-47 (2007). 13. R. Espinosa-Luna and E. Bernabéu, “On the Q(M) depolarization metric”, Opt. Commun. 277, 256-258 (2007). 14. R. A. Chipman, Polarimetry, in Handbook of Optics (McGraw Hill, 1995), Vol. 2. 15. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Guota, and K. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry”, Opt. Express 14, 190-202 (2006). 16. Aiello, G. Puentes, D. Voight, and J. P. Woerdman, “Maximum likelihood estimation of Mueller matrices”, Opt. Lett. 31, 817-819 (2006). 17. S. N. Savenkov, R. S. Muttiah, and Yu A. Oberemok, “Transmitted and reflected scattering matrices from an English oak leaf”, Appl. Opt. 42, 4955-4962 (2003). 18. S. N. Savenkov and K. E. Yushtin, “Pecularities of depolarization of linearly polarized radiation by a layer of the anisotropic inhomogeneous medium”, Ukr. J. Phys. 50, 235-239 (2005). 19. S. N. Savenkov, R. S. Muttiah, K. E. Yushtin, and S. A. Volchkov, “Mueller-matrix model of an inhomogeneous, linear, birefringent medium: single scattering case”, J. Quant. Spectrosc. Radiat. Transfer 106, 475-486 (2007). | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1