Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The classical theory of univalent functions and quasistatic crack propagation

Loading...
Thumbnail Image

Full text at PDC

Publication date

2006

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge University Press
Citations
Google Scholar

Citation

Abstract

We study the propagation of a crack in critical equilibrium for a brittle material in a Mode III field. The energy variations for small virtual extensions of the crack are handled in a novel way: the amount of energy released is written as a functional over a family of univalent functions on the upper half plane. Classical techniques developed in connection to the Bieberbach Conjecture are used to quantify the energy-shape relationship. By means of a special family of trial paths generated by the so-called Löwner equation we impose a stability condition on the field which derives in a local crack propagation criterion. We called this the anti-symmetry principle, being closely related to the well known symmetry principle for the in-plane fields.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections