Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Social-Aware Driver Assistance Systems for City Traffic in Shared Spaces

dc.contributor.authorFernández-Isabel, Alberto
dc.contributor.authorFuentes Fernández, Rubén
dc.date.accessioned2023-06-17T12:38:41Z
dc.date.available2023-06-17T12:38:41Z
dc.date.issued2019-01-09
dc.description.abstractShared spaces are gaining presence in cities, where a variety of players and mobility types (pedestrians, bicycles, motorcycles, and cars) move without specifically delimited areas. This makes the traffic they comprise challenging for automated systems. The information traditionally considered (e.g., streets, and obstacle positions and speeds) is not enough to build suitable models of the environment. The required explanatory and anticipation capabilities need additional information to improve them. Social aspects (e.g., goal of the displacement, companion, or available time) should be considered, as they have a strong influence on how people move and interact with the environment. This paper presents the Social-Aware Driver Assistance System (SADAS) approach to integrate this information into traffic systems. It relies on a domain-specific modelling language for social contexts and their changes. Specifications compliant with it describe social and system information, their links, and how to process them. Traffic social properties are the formalization within the language of relevant knowledge extracted from literature to interpret information. A multi-agent system architecture manages these specifications and additional processing resources. A SADAS can be connected to other parts of traffic systems by means of subscription-notification mechanisms. The case study to illustrate the approach applies social knowledge to predict people’s movements. It considers a distributed system for obstacle detection and tracking, and the intelligent management of traffic signals.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipComunidad de Madrid/FEDER
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporte (MECD)
dc.description.sponsorshipUniversidad Complutense de Madrid/Banco de Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67665
dc.identifier.doi10.3390/s19020221
dc.identifier.issn1424-8220
dc.identifier.officialurlhttps://doi.org/10.3390/s19020221
dc.identifier.relatedurlhttps://www.mdpi.com/1424-8220/19/2/221
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12690
dc.issue.number2
dc.journal.titleSensors
dc.language.isoeng
dc.page.initial221
dc.publisherMDPI
dc.relation.projectIDTIN2017-88327-R
dc.relation.projectIDMOSI-AGIL-CM (S2013/ICE-3019)
dc.relation.projectIDPRX17/00613
dc.relation.projectIDUCM-BSCH GR35/10-A.
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordshared space
dc.subject.keywordmulti-modal traffic
dc.subject.keywordpeople displacement
dc.subject.keywordtraffic social property
dc.subject.keywordsocial knowledge
dc.subject.keywordSocial-Aware Driver Assistance System
dc.subject.keywordMulti-Agent System
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleSocial-Aware Driver Assistance Systems for City Traffic in Shared Spaces
dc.typejournal article
dc.volume.number19
dspace.entity.typePublication
relation.isAuthorOfPublication1aecf3ea-fbdd-473c-9aac-dc620a2f688e
relation.isAuthorOfPublication.latestForDiscovery1aecf3ea-fbdd-473c-9aac-dc620a2f688e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Social-Aware_Driver_Assistance_Systems_for_City_Tr.pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format

Collections