Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Social-Aware Driver Assistance Systems for City Traffic in Shared Spaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

2019

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Citations
Google Scholar

Citation

Abstract

Shared spaces are gaining presence in cities, where a variety of players and mobility types (pedestrians, bicycles, motorcycles, and cars) move without specifically delimited areas. This makes the traffic they comprise challenging for automated systems. The information traditionally considered (e.g., streets, and obstacle positions and speeds) is not enough to build suitable models of the environment. The required explanatory and anticipation capabilities need additional information to improve them. Social aspects (e.g., goal of the displacement, companion, or available time) should be considered, as they have a strong influence on how people move and interact with the environment. This paper presents the Social-Aware Driver Assistance System (SADAS) approach to integrate this information into traffic systems. It relies on a domain-specific modelling language for social contexts and their changes. Specifications compliant with it describe social and system information, their links, and how to process them. Traffic social properties are the formalization within the language of relevant knowledge extracted from literature to interpret information. A multi-agent system architecture manages these specifications and additional processing resources. A SADAS can be connected to other parts of traffic systems by means of subscription-notification mechanisms. The case study to illustrate the approach applies social knowledge to predict people’s movements. It considers a distributed system for obstacle detection and tracking, and the intelligent management of traffic signals.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections