On The genus of meromorphic of functions.
dc.contributor.author | Muñoz, Vicente | |
dc.contributor.author | Marco Perez, Ricardo | |
dc.date.accessioned | 2023-06-19T14:53:56Z | |
dc.date.available | 2023-06-19T14:53:56Z | |
dc.date.issued | 2015 | |
dc.description.abstract | We define the class of Left Located Divisor (LLD) meromorphic functions, their vertical order m(0)(f) and their convergence exponent d(f). When m0(f) <= d(f) we prove that their Weierstrass genus is minimal. This explains the phenomena that many classical functions have minimal Weierstrass genus, for example, Dirichlet series, the Gamma-function, and trigonometric functions. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish MICINN | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/30125 | |
dc.identifier.doi | 10.1090/S0002-9939-2014-12370-7 | |
dc.identifier.issn | 1088-6826 | |
dc.identifier.officialurl | http://www.ams.org/journals/proc/2015-143-01/S0002-9939-2014-12370-7/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/34633 | |
dc.issue.number | 1 | |
dc.journal.title | Proceedings of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 351 | |
dc.page.initial | 341 | |
dc.publisher | America Mathematical Society | |
dc.relation.projectID | MTM2010-17389 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.5 | |
dc.subject.keyword | Dirichlet series | |
dc.subject.keyword | Poisson-Newton formula | |
dc.subject.keyword | Hadamard factorization | |
dc.subject.ucm | Funciones (Matemáticas) | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | On The genus of meromorphic of functions. | |
dc.type | journal article | |
dc.volume.number | 134 | |
dcterms.references | [1] Lars V. Ahlfors, Complex analysis, 3rd ed., An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. MR510197 (80c:30001) [2] Ralph Philip Boas Jr., Entire functions, Academic Press Inc., New York, 1954. MR0068627 (16,914f) [3] G. H. Hardy and M. Riesz, The general theory of Dirichlet’s series, Dover, 1915. [4] V. Muñoz and R. P´erez-Marco, Unified treatment of explicit and trace formulas via PoissonNewton formula, arXiv:1309.1449, 2013. [5] Laurent Schwartz, Theorie des distributions (French), Publications de l’Institut de Mathematique de l’Universit´e de Strasbourg, No. IX-X. Nouvelle ´edition, entierement corrigee, refondue et augment´ee, Hermann, Paris, 1966. MR0209834 (35 #730) [6] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Univ. Press., 4th edition, 1927. Reprinted 1962. MR0178117 (31 #2375) [7] A. H. Zemanian, Distribution theory and transform analysis, An introduction to generalized functions, with applications, 2nd ed., Dover Publications Inc., New York, 1987. MR918977 (88h:46081) | |
dspace.entity.type | Publication |