Homogeneous algebraic distributions
Loading...
Download
Official URL
Full text at PDC
Publication date
2001
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Rocky Mountain Mathematics Consortium
Citation
Abstract
Let p:E→M be a vector bundle of dimension n+m and (xλ,yi), λ=1,…,n, i=1,…,m, be fibre coordinates. A vertical vector field X on E is said to be algebraic [respectively, algebraic homogeneous of degree d] if its coordinate expression is of the type X=∑mi=1Pi∂/∂yi, where Pi are polynomials [respectively, homogeneous polynomials of degree d] in coordinates yi. A vertical distribution over E is said to be algebraic [respectively, homogeneous algebraic of degree d] if all local generators are homogeneous algebraic [respectively, homogeneous algebraic of the same degree d] vector fields. It is proved that a vertical distribution locally spanned by vector fields X1,…,Xr is homogeneous algebraic of degree d if and only if an r×r matrix A=(aij), aij∈C∞(E), exists which is equal to d−1 times the identity matrix along the zero section of E, and such that [χ,Xj]=∑ri=1aijXi, j=1,…,r, where χ is the Liouville vector field.