Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Homogeneous algebraic distributions

dc.contributor.authorCastrillón López, Marco
dc.contributor.authorMuñoz Masqué, Jaime
dc.date.accessioned2023-06-20T18:54:27Z
dc.date.available2023-06-20T18:54:27Z
dc.date.issued2001
dc.description.abstractLet p:E→M be a vector bundle of dimension n+m and (xλ,yi), λ=1,…,n, i=1,…,m, be fibre coordinates. A vertical vector field X on E is said to be algebraic [respectively, algebraic homogeneous of degree d] if its coordinate expression is of the type X=∑mi=1Pi∂/∂yi, where Pi are polynomials [respectively, homogeneous polynomials of degree d] in coordinates yi. A vertical distribution over E is said to be algebraic [respectively, homogeneous algebraic of degree d] if all local generators are homogeneous algebraic [respectively, homogeneous algebraic of the same degree d] vector fields. It is proved that a vertical distribution locally spanned by vector fields X1,…,Xr is homogeneous algebraic of degree d if and only if an r×r matrix A=(aij), aij∈C∞(E), exists which is equal to d−1 times the identity matrix along the zero section of E, and such that [χ,Xj]=∑ri=1aijXi, j=1,…,r, where χ is the Liouville vector field.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24262
dc.identifier.doi10.1216/rmjm/1008959668
dc.identifier.issn0035-7596
dc.identifier.officialurlhttp://projecteuclid.org/euclid.rmjm/1181070239
dc.identifier.relatedurlhttp://projecteuclid.org/euclid.rmjm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58902
dc.issue.number1
dc.journal.titleRocky Mountain Journal of Mathematics
dc.language.isoeng
dc.page.final75
dc.page.initial57
dc.publisherRocky Mountain Mathematics Consortium
dc.relation.projectIDPB95-0124
dc.rights.accessRightsopen access
dc.subject.cdu514.7
dc.subject.keywordAdjoint bundle
dc.subject.keywordalgebraic morphism of vector bundles
dc.subject.keywordalgebraic vector field
dc.subject.keywordinvolutive distribution
dc.subject.keywordgauge algebra
dc.subject.keywordlinear representation
dc.subject.keywordLie group bundle
dc.subject.keywordLiouville's vector field.
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleHomogeneous algebraic distributions
dc.typejournal article
dc.volume.number31
dcterms.referencesM.F Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181–207. M.F Atiyah, Geometry and physics: Where are we going?, Lecture Notes in Pure. and Appl. Math. 184 (1997), 1–7. D. Betounes, The geometry of gauge-particle field interaction: A generalization of Utiyama's theorem, J. Geom. Phys. 6 (1989), 107–125. D. Bleecker, Gauge theory and variational principles, Addison-Wesley Publ. Co., Inc., Reading, MA, 1981. N. Bourbaki, Éléments de mathématique, Algèbre, Hermann, Paris, 1970. F. Cano, Réduction de singularités des feuilletages holomorphes, C.R. Acad. Sci. Paris 307 (1988), 795–798. H. Cartan, Calcul différentiel, Hermann, Paris, 1967. A. Grothendieck and J.A. Dieudonné, Éléments de géometrie algébrique, Springer-Verlag, Berlin, 1971. V. Guillemin and S. Sternberg, Symplectic techniques in physics, Cambridge Univ. Press, Cambridge, UK, 1983. I. Kolář, P.W. Michor and J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin, 1993. P. Lecomte, On the infinitesimal automorphisms of a vector bundle, J. Math. Pures Appl. 60 (1981), 229–239. P.A.B. Lecomte, P.W. Michor and H. Schikentanz, The multigraded Nijenhuis-Richardson algebra, its universal property and applications, J. Pure Appl. Algebra 77 (1992), 87–102. MR1148273 (93d:17036) P. Libermann and Ch.M. Marle, Symplectic geometry and analytical mechanics, D. Reidel Publ. Co., Dordrecht, Holland, 1987. MR0882548 (88c:58016) B. Malgrange, Frobenius avec singularitiés, Invent. Math. 39 (1977), 67–89. MR0508170 (58 #22685b) Y.I. Manin, Gauge field theory and complex geometry, Springer-Verlag, Berlin, 1988. MR0954833 (89d:32001) J. Martinet and J.P. Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Inst. Hautes Études Sci. Publ. Math. 55 (1981), 63–164. MR0672182 (84k:34011) K. Michael, About the geometric structure of symmetry-breaking, J. Math. Phys. 32 (1991), 1065–1071. J. Mickelsson, Current algebras and groups, Plenum Press, New York, 1989. P.K. Mitter and C.M. Viallet, On the bundle of connections and the gaugeorbit manifold in Yang-Mills theory, Comm. Math. Phys. 79 (1981), 457–472. J. Muñoz-Masqué and A. Valdés Morales, The number of functionally independent invariants of a pseudo-Riemannian metric, J. Phys. A: Math. Gen. 27 (1994), 7843–7855. L. Nachbin, Sur les algèbres denses de fonctions différentiables sur une variété, C.R. Acad. Sci. Paris 228 (1949), 1549–1551. P. Olver, Equivalence, invariants and symmetry, Cambridge Univ. Press, Cambridge, UK, 1995. ) C. Roger, Algèbres de Lie graduées et quantification, in Symplectic geometry and mathematical physics, Prog. Math., Birkhauser, Boston, 1991, 374–421. J.C. Tongeron, Ideaux de fonctions différentiables, Springer-Verlag, Berlin, 1972
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
castrillón220pdf.pdf
Size:
206.84 KB
Format:
Adobe Portable Document Format

Collections