Risperidone normalizes increased inflammatory parameters and restores anti-inflammatory pathways in a model of neuroinflammation
Loading...
Download
Full text at PDC
Publication date
2013
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press
Citation
MacDowell KS, García-Bueno B, Madrigal JL, Parellada M, Arango C, Micó JA, Leza JC. Risperidone normalizes increased inflammatory parameters and restores anti-inflammatory pathways in a model of neuroinflammation. Int J Neuropsychopharmacol. 2013 Feb;16(1):121-35. doi: 10.1017/S1461145711001775. PMID: 22176740.
Abstract
Inflammation, caused by both external and endogenous factors, has been implicated as a main pathophysiological feature of chronic mental illnesses, including schizophrenia. An increase in pro-inflammatory cytokines has been described both in experimental models and in schizophrenia patients. However, not much is known about the effects that antipsychotic drugs have on intra- and intercellular mechanisms controlling inflammation. The aim of the present study was to investigate the possible anti-inflammatory effect of a standard schizophrenia treatment not only at the level of soluble mediators, but also at intra- and intercellular inflammatory pathways. The present study was conducted in a model of mild neuroinflammation using a lipopolysaccharide (LPS) challenge that was not an endotoxaemic dose (0.5 mg/kg i.p.) in young adult rats. Main results: single doses of risperidone (0.3–3.0 mg/kg i.p.) prevented increased inflammatory parameters induced by LPS in brain cortex [expression of inflammatory cytokines, interleukin (IL)-1β and tumour necrosis factor (TNF)-α, activity of the inducible inflammatory enzymes nitric oxide synthase and cyclooxygenase, p38 mitogen-activated protein kinase (MAPK) and inflammatory nuclear transcription factor κB] and restored anti-inflammatory pathways decreased by LPS challenge (deoxyprostaglandins and peroxisome proliferator activated receptor γ). This is the first study demonstrating that risperidone elicits a preventive effect on the anti-inflammatory arm of the homeostatic mechanism controlling inflammation in a model of mild encephalitis in rats. Our findings suggest a possible protective effect of risperidone on brain cells.