Universality in the three-dimensional random-field ising model
Loading...
Official URL
Full text at PDC
Publication date
2013
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citation
Abstract
We solve a long-standing puzzle in statistical mechanics of disordered systems. By performing a high-statistics simulation of the D = 3 random-field Ising model at zero temperature for different shapes of the random-field distribution, we show that the model is ruled by a single universality class. We compute the complete set of critical exponents for this class, including the correction-to-scaling exponent, and we show, to high numerical accuracy, that scaling is described by two independent exponents. Discrepancies with previous works are explained in terms of strong scaling corrections.
Description
© 2013 American Physical Society. We were partly supported by MICINN, Spain, through research contracts No. FIS2009-12648-C03 and No. FIS2012-35719-C02-01. Significant allocations of computing time were obtained in the clusters Terminus and Memento (BIFI). We are grateful to D. Yllanes and, especially, to L. A. Fernández for substantial help during several parts of this work. We also thank A. Pelissetto and G. Tarjus for useful correspondence.