Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deep learning exotic hadrons

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

APS Physics
Citations
Google Scholar

Citation

Abstract

We perform the first amplitude analysis of experimental data using deep neural networks to determine the nature of an exotic hadron. Specifically, we study the line shape of the P c ( 4312 ) signal reported by the LHCb collaboration, and we find that its most likely interpretation is that of a virtual state. This method can be applied to other near-threshold resonance candidates.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections