Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

From Ramond fermions to Lamé equations for orthogonal curvilinear coordinates

dc.contributor.authorMañas Baena, Manuel Enrique
dc.contributor.authorMartínez Alonso, Luis
dc.date.accessioned2023-06-20T20:09:13Z
dc.date.available2023-06-20T20:09:13Z
dc.date.issued1998-09-24
dc.description©1998 Elsevier Science B.V.
dc.description.abstractWe show how Ramond free neutral Fermi fields lead to a Ƭ-function theory of BKP type which describes iso-orthogonal deformations of systems of orthogonal curvilinear coordinates. We also provide a vertex operator representation for the classical Ribaucour transformation.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32496
dc.identifier.doi10.1016/S0370-2693(98)00851-X
dc.identifier.issn0370-2693
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0370-2693(98)00851-X
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59693
dc.issue.number3-abr
dc.journal.titlePhysics letters B
dc.language.isoeng
dc.page.final322
dc.page.initial316
dc.publisherElsevier Science BV
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu51-73
dc.subject.keywordSystems
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleFrom Ramond fermions to Lamé equations for orthogonal curvilinear coordinates
dc.typejournal article
dc.volume.number436
dcterms.references[1] L. Bianchi, Lezione di Geometria Differenziale, 3- a ed., Zanichelli, Bologna, 1924. [2] G. Darboux, Lec¸ons sur la theorie generale des surfaces IV, Gauthier-Villars, Paris, 1896. Peprinted by Chelsea Publishing Company, New York, 1972. [3] G. Darboux, Lec¸ons sur les systemes orthogonaux et les coordenées curvilignes (deuxieme edition), Gauthier-Villars, Paris, 1910 (the first edition was in 1897) . Reprinted by Éditions Jacques Gabay, Sceaux, 1993. [4] G. Darboux, Ann. L’Ecole Normale 3 (1866) 97. [5] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Physica D 4 (1982) 343. [6] A. Doliwa, M. Mañas, L. Martínez Alonso, E. Medina, P.M. Santini, Charged Free Fermions, Vertex Operators and Classical Theory of Conjugate Nets, 1998, solv-intr9803015. [7] R. Dijkgraff, E. Verlinde, H. Verlinde, Nucl. Phys. B 352 (1991) 59. [8] B. Dubrovin, Nucl. Phys. B 379 1992 627. [9] L.P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn, Co., Boston, 1909. [10] L.P. Eisenhart, Transformations of Surfaces, Princeton University Press, Princeton, 1923. Reprinted by Chelsea Publishing Company, New York, 1962. [11] D.-Th. Egorov, Comp. Rend. Acad. Sci. Paris 131 (1900) 668; 132 (1901) 174. [12] P. Goddard, D. Olive, Int. J. Mod. Phys. 1 (1986) 303. [13] I.M. Krichever, Func. Anal. Appl. 31 (1997) 25. [14] G. Lamé, Lec çons sur la théorie des coordenées curvilignes et leurs diverses applications, Mallet-Bachalier, Paris, 1859. [15] A. Ribaucour, Comp. Rend. Acad. Sci. Paris 74 (1872) 1489. [16] G. Segal, G. Wilson, Publ. Math. IHES 61 (1985) 5. [17] E. Witten, Nucl. Phys. B 340 (1990) 281. [18] V.E. Zakharov, On Integrability of the Equations Describing N-Orthogonal Curvilinear Coordinate Systems and Hamiltonian Integrable Systems of Hydrodynamic Type I: Integration of the Lame Equations, Preprint, 1996.
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery896aafc0-9740-4609-bc38-829f249a0d2b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas37libre.pdf
Size:
78.95 KB
Format:
Adobe Portable Document Format

Collections