Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

From Ramond fermions to Lamé equations for orthogonal curvilinear coordinates

dc.contributor.authorMañas Baena, Manuel Enrique
dc.contributor.authorMartínez Alonso, Luis
dc.date.accessioned2023-06-20T20:09:13Z
dc.date.available2023-06-20T20:09:13Z
dc.date.issued1998-09-24
dc.description©1998 Elsevier Science B.V.
dc.description.abstractWe show how Ramond free neutral Fermi fields lead to a Ƭ-function theory of BKP type which describes iso-orthogonal deformations of systems of orthogonal curvilinear coordinates. We also provide a vertex operator representation for the classical Ribaucour transformation.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32496
dc.identifier.doi10.1016/S0370-2693(98)00851-X
dc.identifier.issn0370-2693
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0370-2693(98)00851-X
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59693
dc.issue.number3-abr
dc.journal.titlePhysics letters B
dc.language.isoeng
dc.page.final322
dc.page.initial316
dc.publisherElsevier Science BV
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu51-73
dc.subject.keywordSystems
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleFrom Ramond fermions to Lamé equations for orthogonal curvilinear coordinates
dc.typejournal article
dc.volume.number436
dcterms.references[1] L. Bianchi, Lezione di Geometria Differenziale, 3- a ed., Zanichelli, Bologna, 1924. [2] G. Darboux, Lec¸ons sur la theorie generale des surfaces IV, Gauthier-Villars, Paris, 1896. Peprinted by Chelsea Publishing Company, New York, 1972. [3] G. Darboux, Lec¸ons sur les systemes orthogonaux et les coordenées curvilignes (deuxieme edition), Gauthier-Villars, Paris, 1910 (the first edition was in 1897) . Reprinted by Éditions Jacques Gabay, Sceaux, 1993. [4] G. Darboux, Ann. L’Ecole Normale 3 (1866) 97. [5] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Physica D 4 (1982) 343. [6] A. Doliwa, M. Mañas, L. Martínez Alonso, E. Medina, P.M. Santini, Charged Free Fermions, Vertex Operators and Classical Theory of Conjugate Nets, 1998, solv-intr9803015. [7] R. Dijkgraff, E. Verlinde, H. Verlinde, Nucl. Phys. B 352 (1991) 59. [8] B. Dubrovin, Nucl. Phys. B 379 1992 627. [9] L.P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn, Co., Boston, 1909. [10] L.P. Eisenhart, Transformations of Surfaces, Princeton University Press, Princeton, 1923. Reprinted by Chelsea Publishing Company, New York, 1962. [11] D.-Th. Egorov, Comp. Rend. Acad. Sci. Paris 131 (1900) 668; 132 (1901) 174. [12] P. Goddard, D. Olive, Int. J. Mod. Phys. 1 (1986) 303. [13] I.M. Krichever, Func. Anal. Appl. 31 (1997) 25. [14] G. Lamé, Lec çons sur la théorie des coordenées curvilignes et leurs diverses applications, Mallet-Bachalier, Paris, 1859. [15] A. Ribaucour, Comp. Rend. Acad. Sci. Paris 74 (1872) 1489. [16] G. Segal, G. Wilson, Publ. Math. IHES 61 (1985) 5. [17] E. Witten, Nucl. Phys. B 340 (1990) 281. [18] V.E. Zakharov, On Integrability of the Equations Describing N-Orthogonal Curvilinear Coordinate Systems and Hamiltonian Integrable Systems of Hydrodynamic Type I: Integration of the Lame Equations, Preprint, 1996.
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery896aafc0-9740-4609-bc38-829f249a0d2b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas37libre.pdf
Size:
78.95 KB
Format:
Adobe Portable Document Format

Collections