From Ramond fermions to Lamé equations for orthogonal curvilinear coordinates
dc.contributor.author | Mañas Baena, Manuel Enrique | |
dc.contributor.author | Martínez Alonso, Luis | |
dc.date.accessioned | 2023-06-20T20:09:13Z | |
dc.date.available | 2023-06-20T20:09:13Z | |
dc.date.issued | 1998-09-24 | |
dc.description | ©1998 Elsevier Science B.V. | |
dc.description.abstract | We show how Ramond free neutral Fermi fields lead to a Ƭ-function theory of BKP type which describes iso-orthogonal deformations of systems of orthogonal curvilinear coordinates. We also provide a vertex operator representation for the classical Ribaucour transformation. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/32496 | |
dc.identifier.doi | 10.1016/S0370-2693(98)00851-X | |
dc.identifier.issn | 0370-2693 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/S0370-2693(98)00851-X | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59693 | |
dc.issue.number | 3-abr | |
dc.journal.title | Physics letters B | |
dc.language.iso | eng | |
dc.page.final | 322 | |
dc.page.initial | 316 | |
dc.publisher | Elsevier Science BV | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Systems | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | From Ramond fermions to Lamé equations for orthogonal curvilinear coordinates | |
dc.type | journal article | |
dc.volume.number | 436 | |
dcterms.references | [1] L. Bianchi, Lezione di Geometria Differenziale, 3- a ed., Zanichelli, Bologna, 1924. [2] G. Darboux, Lec¸ons sur la theorie generale des surfaces IV, Gauthier-Villars, Paris, 1896. Peprinted by Chelsea Publishing Company, New York, 1972. [3] G. Darboux, Lec¸ons sur les systemes orthogonaux et les coordenées curvilignes (deuxieme edition), Gauthier-Villars, Paris, 1910 (the first edition was in 1897) . Reprinted by Éditions Jacques Gabay, Sceaux, 1993. [4] G. Darboux, Ann. L’Ecole Normale 3 (1866) 97. [5] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Physica D 4 (1982) 343. [6] A. Doliwa, M. Mañas, L. Martínez Alonso, E. Medina, P.M. Santini, Charged Free Fermions, Vertex Operators and Classical Theory of Conjugate Nets, 1998, solv-intr9803015. [7] R. Dijkgraff, E. Verlinde, H. Verlinde, Nucl. Phys. B 352 (1991) 59. [8] B. Dubrovin, Nucl. Phys. B 379 1992 627. [9] L.P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn, Co., Boston, 1909. [10] L.P. Eisenhart, Transformations of Surfaces, Princeton University Press, Princeton, 1923. Reprinted by Chelsea Publishing Company, New York, 1962. [11] D.-Th. Egorov, Comp. Rend. Acad. Sci. Paris 131 (1900) 668; 132 (1901) 174. [12] P. Goddard, D. Olive, Int. J. Mod. Phys. 1 (1986) 303. [13] I.M. Krichever, Func. Anal. Appl. 31 (1997) 25. [14] G. Lamé, Lec çons sur la théorie des coordenées curvilignes et leurs diverses applications, Mallet-Bachalier, Paris, 1859. [15] A. Ribaucour, Comp. Rend. Acad. Sci. Paris 74 (1872) 1489. [16] G. Segal, G. Wilson, Publ. Math. IHES 61 (1985) 5. [17] E. Witten, Nucl. Phys. B 340 (1990) 281. [18] V.E. Zakharov, On Integrability of the Equations Describing N-Orthogonal Curvilinear Coordinate Systems and Hamiltonian Integrable Systems of Hydrodynamic Type I: Integration of the Lame Equations, Preprint, 1996. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0d5b5872-7553-4b33-b0e5-085ced5d8f42 | |
relation.isAuthorOfPublication | 896aafc0-9740-4609-bc38-829f249a0d2b | |
relation.isAuthorOfPublication.latestForDiscovery | 896aafc0-9740-4609-bc38-829f249a0d2b |
Download
Original bundle
1 - 1 of 1