Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Monomorphisms and epimorphisms in pro-categories

dc.contributor.authorDydak, J.
dc.contributor.authorRomero Ruiz del Portal, Francisco
dc.date.accessioned2023-06-20T09:46:41Z
dc.date.available2023-06-20T09:46:41Z
dc.date.issued2007
dc.description.abstractA morphism of a category which is simultaneously an epimorphism and a monomorphism is called a bimorphism. We give haracterizations of monomorphisms (respectively, epimorphisms) in pro-category pro-C, provided C has direct sums (respectively,pushouts). Let E(C) (respectively, M(C)) be the subcategory of C whose morphisms are epimorphisms (respectively, monomorphisms) of C. We give conditions in some categories C for an object X of pro-C to be isomorphic to an object of pro-E(C) (respectively,pro-M(C)). A related class of objects of pro-C consists of X such that there is an epimorphism X→P ∈ Ob(C) (respectively, a monomorphism P Ob(C) →X). Characterizing those objects involves conditions analogous (respectively, dual) to the Mittag–Leffler property. One should expect that the object belonging to both classes ought to be stable. It is so in the case of pro-groups. The natural environment to discuss those questions are balanced categories with epimorphic images. The last part of the paper deals with that question in pro-homotopy.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipNSF Ministry of Science and Education of Spain
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/18173
dc.identifier.doi10.1016/j.topol.2006.06.009
dc.identifier.issn0166-8641
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/01668641
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50343
dc.issue.number10
dc.journal.titleTopology and its Applications
dc.language.isoeng
dc.page.final2222
dc.page.initial2204
dc.publisherElsevier Science
dc.relation.projectIDDMS-0072356
dc.relation.projectIDBFM 2003-0825
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordMonomorphism
dc.subject.keywordEpimorphism
dc.subject.keywordPro-categories
dc.subject.keywordBalanced categories
dc.subject.keywordCategories with epimorphic images
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleMonomorphisms and epimorphisms in pro-categories
dc.typejournal article
dc.volume.number154
dcterms.referencesZ. Cerin, Homotopy properties of locally compact spaces at infinity—calmness and smoothness, Pacific J. Math. 79 (1978) 69–91. J. Dydak, The Whitehead and the Smale theorems in shape theory, Dissertationes Math. 156 (1979) 1–51. J. Dydak, Epimorphism and monomorphism in homotopy, Proc. Amer. Math. Soc. 116 (1992) 1171–1173. J. Dydak, F.R. Ruiz del Portal, Bimorphisms in pro-homotopy and proper homotopy, Fund. Math. 160 (1999) 269–286. J. Dydak, F.R. Ruiz del Portal, Isomorphisms in pro-categories, J. Pure Appl. Algebra 190 (2004) 85–120. J. Dydak, J. Segal, Shape Theory: An Introduction, Lecture Notes in Math., vol. 688, Springer-Verlag, 1978. E. Dyer, J. Roitberg, Homotopy-epimorphism, homotopy-monomorphism and homotopy-equivalences, Topology Appl. 46 (1992) 119–124. S. Ghorbal, Epimorphisms and monomorphisms in homotopy theory, PhD Thesis, Universitè Catholique de Louvain, 1996 (in French). T.W. Hungerford, Algebra, Springer-Verlag, New York, 1974. S. Mardesic, J. Segal, Shape Theory, North-Holland Publ. Co., Amsterdam, 1982. B. Mitchell, Theory of Categories, Academic Press, New York and London, 1965. M.A. Morón, F.R. Ruiz del Portal, On weak shape equivalences, Topology Appl. 92 (1999) 225–236. G. Mukherjee, Equivariant homotopy epimorphisms, homotopy monomorphisms and homotopy equivalences, Bull. Belg.Math.Soc. 2 (1995) 447–461.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RomeroRuiz12.pdf
Size:
237.89 KB
Format:
Adobe Portable Document Format

Collections