Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Monomorphisms and epimorphisms in pro-categories

Loading...
Thumbnail Image

Full text at PDC

Publication date

2007

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science
Citations
Google Scholar

Citation

Abstract

A morphism of a category which is simultaneously an epimorphism and a monomorphism is called a bimorphism. We give haracterizations of monomorphisms (respectively, epimorphisms) in pro-category pro-C, provided C has direct sums (respectively,pushouts). Let E(C) (respectively, M(C)) be the subcategory of C whose morphisms are epimorphisms (respectively, monomorphisms) of C. We give conditions in some categories C for an object X of pro-C to be isomorphic to an object of pro-E(C) (respectively,pro-M(C)). A related class of objects of pro-C consists of X such that there is an epimorphism X→P ∈ Ob(C) (respectively, a monomorphism P Ob(C) →X). Characterizing those objects involves conditions analogous (respectively, dual) to the Mittag–Leffler property. One should expect that the object belonging to both classes ought to be stable. It is so in the case of pro-groups. The natural environment to discuss those questions are balanced categories with epimorphic images. The last part of the paper deals with that question in pro-homotopy.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections