Rapid quantitative phase imaging for partially coherent light microscopy

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
The Optical Society Of America
Google Scholar
Research Projects
Organizational Units
Journal Issue
Partially coherent light provides promising advantages for imaging applications. In contrast to its completely coherent counterpart, it prevents image degradation due to speckle noise and decreases cross-talk among the imaged objects. These facts make attractive the partially coherent illumination for accurate quantitative imaging in microscopy. In this work, we present a non-interferometric technique and system for quantitative phase imaging with simultaneous determination of the spatial coherence properties of the sample illumination. Its performance is experimentally demonstrated in several examples underlining the benefits of partial coherence for practical imagining applications. The programmable optical setup comprises an electrically tunable lens and sCMOS camera that allows for high-speed measurement in the millisecond range.
© 2014 Optical Society of America. The Spanish Ministerio de Economía y Competitividad is acknowledged for the project TEC2011-23629. We also thank Optotune AG (Switzerland) for technical assistance.
1. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006). 2. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009). 3. M. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, Springer Series in Optical Sciences (Springer, 2011). 4. P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, Springer Series in Surface Sciences (Springer, 2011). 5. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat Photon 7, 113–117 (2013). 6. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972). 7. L. Camacho, V. Micó, Z. Zalevsky, and J. García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express 18, 6755–6766 (2010). 8. J. A. Rodrigo, T. Alieva, G. Cristóbal, and M. L. Calvo, “Wavefield imaging via iterative retrieval based on phase modulation diversity,” Opt. Express 19, 18621–18635 (2011). 9. T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997). 10. C. Zuo, Q. Chen,W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21, 24060–24075 (2013). 11. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum,” PNAS 105, 13730– 13735 (2008). 12. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008). 13. B. Redding, M. A.Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat Photonics 6, 355–359 (2012). 14. M. Nixon, B. Redding, A. A. Friesem, H. Cao, and N. Davidson, “Efficient method for controlling the spatial coherence of a laser,” Opt. Lett. 38, 3858–3861 (2013). 15. B. Kemper, S. Sturwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008). 16. P. Langehanenberg, G. v. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57, 709–717 (2010). 17. S. O. Isikman, W. Bishara, and A. Ozcan, “Partially coherent lensfree tomographic microscopy [Invited],” Appl. Opt. 50, H253–H264 (2011). 18. T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat Photonics 8, 256–263 (2014). 19. J. W. Goodman, Statistical Optics (Wiley&Sons, 2000). 20. I. Abdulhalim, “Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography,” Ann. Phys-Berlin 524, 787–804 (2012). 21. A. C. Schell, “The multiple plate antenna,” Ph.D. thesis, Massachusetts Institute of Technology (1961). 22. C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47, 5305– 5314 (2008). 23. T. J. McIntyre, C. Maurer, S. Fassl, S. Khan, S. Bernet, and M. Ritsch-Marte, “Quantitative SLM-based differential interference contrast imaging,” Opt. Express 18, 14063–14078 (2010). 24. J. A. Rodrigo and T. Alieva, “Recovery of Schell-model partially coherent beams,” Opt. Lett. 39, 1030–1033 (2014). 25. F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21, 21010–21026 (2013). 26. J. Clark, X. Huang, R. Harder, and I. Robinson, “High-resolution three-dimensional partially coherent diffraction imaging,” Nat Commun 3, 993 (2012). 27. D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Optic 44, 407–414 (1997). 28. M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41, 7437–7444 (2002). 29. A. V. Martin, F. R. Che, W. K. Hsieh, J. J. Kai, S. D. Findlay, and L. J. Allen, “Spatial incoherence in phase retrieval based on focus variation,” Ultramicroscopy 106, 914–924 (2006). 30. J. W. Goodman, Introduction to Fourier Optics, (Roberts&Company, 2005).