Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An exactly solvable supersymmetric spin chain of BC_N type

dc.contributor.authorBarba, J. C:
dc.contributor.authorFinkel Morgenstern, Federico
dc.contributor.authorGonzález López, Artemio
dc.contributor.authorRodríguez González, Miguel Ángel
dc.date.accessioned2023-06-20T03:55:37Z
dc.date.available2023-06-20T03:55:37Z
dc.date.issued2009-01-11
dc.description©2008 Elsevier B.V. All fights reserved. This work was partially supported by the DGI under grant No. FIS2005-00752, and by the Complutense University of Madrid and the DGUI under grant No. GR74/07-910556. J.C.B. acknowledges the financial support of the Spanish Ministry of Science and Innovation through an FPU scholarship.
dc.description.abstractWe construct a new exactly solvable supersymmetric spin chain related to the BC_N extended root system, which includes as a particular case the BC_N version of the Polychronakos-Frahm spin chain. We also introduce a supersymmetric spin dynamical model of Calogero type which yields the new chain in the large coupling limit. This connection is exploited to derive two different closed-form expressions for the chain's partition function by means of Polychronakos's freezing trick. We establish a boson-fermion duality relation for the new chain's spectrum, which is in fact valid for a large class of (not necessarily integrable) spin chains of BC_N type. The exact expressions for the partition function are also used to study the chain's spectrum as a whole, showing that the level density is normally distributed even for a moderately large number of particles. We also determine a simple analytic approximation to the distribution of normalized spacings between consecutive levels which fits the numerical data with remarkable accuracy. Our results provide further evidence that spin chains of Haldane-Shastry type are exceptional integrable models, in the sense that their spacings distribution is not Poissonian, as posited by the Berry-Tabor conjecture for "generic" quantum integrable systems.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGI
dc.description.sponsorshipComplutense University of Madrid
dc.description.sponsorshipDGUI
dc.description.sponsorshipSpanish Ministry of Science and Innovation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31338
dc.identifier.doi10.1016/j.nuclphysb.2008.08.014
dc.identifier.issn0550-3213
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.nuclphysb.2008.08.014
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44679
dc.issue.number3
dc.journal.titleNuclear physics B
dc.language.isoeng
dc.page.final714
dc.page.initial684
dc.publisherElsevier
dc.relation.projectIDFIS2005-00752
dc.relation.projectIDGR74/07-910556
dc.relation.projectIDFPU scholarship
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu51-73
dc.subject.keywordExactly solvable spin chains
dc.subject.keywordSupersymmetry
dc.subject.keywordQuantum chaos
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleAn exactly solvable supersymmetric spin chain of BC_N type
dc.typejournal article
dc.volume.number806
dcterms.references[1] M. Arikawa, Y. Saiga, Y. Kuramoto, Phys. Rev. Lett. 86 (2001) 3096. [2] M. Arikawa, Y. Saiga, J. Phys. A: Math. Gen. 39 (2006) 10603. [3] R. Hernández, E. López, JHEP 0411 (2004) 079. [4] F.D.M. Haldane, Phys. Rev. Lett. 60 (1988) 635. [5] B.S. Shastry, Phys. Rev. Lett. 60 (1988) 639. [6] A.P. Polychronakos, Phys. Rev. Lett. 70 (1993) 2329. [7] H. Frahm, J. Phys. A: Math. Gen. 26 (1993) L473. [8] J. Hubbard, Proc. R. Soc. London Ser. A 276 (1963) 238. [9] M.C. Gutzwiller, Phys. Rev. Lett. 10 (1963) 159. [10] F. Gebhard, D. Vollhardt, Phys. Rev. Lett. 59 (1987) 1472. [11] F. Gebhard, A.E. Ruckenstein, Phys. Rev. Lett. 68 (1992) 244. [12] N. Kawakami, Phys. Rev. B 46 (1992) 1005. [13] Z.N.C. Ha, F.D.M. Haldane, Phys. Rev. B 46 (1992) 9359. [14] F.D.M. Haldane, Z.N.C. Ha, J.C. Talstra, D. Bernard, V. Pasquier, Phys. Rev. Lett. 69 (1992) 2021. [15] D. Bernard, M. Gaudin, F.D.M. Haldane, V. Pasquier, J. Phys. A: Math. Gen. 26 (1993) 5219. [16] C.F. Dunkl, Trans. Am. Math. Soc. 311 (1989) 167. [17] A.P. Polychronakos, Phys. Rev. Lett. 69 (1992) 703. [18] B. Sutherland, Phys. Rev. A 4 (1971) 2019. [19] B. Sutherland, Phys. Rev. A 5 (1972) 1372. [20] F. Finkel, A. González-López, Phys. Rev. B 72 (2005) 174411. [21] A.P. Polychronakos, Nucl. Phys. B 419 (1994) 553. [22] F. Calogero, J. Math. Phys. 12 (1971) 419. [23] J.A. Minahan, A.P. Polychronakos, Phys. Lett. B 302 (1993) 265. [24] F. Calogero, Lett. Nuovo Cimento 20 (1977) 251. [25] B. Basu-Mallick, H. Ujino, M. Wadati, J. Phys. Soc. Jpn. 68 (1999) 3219. [26] K. Hikami, B. Basu-Mallick, Nucl. Phys. B 566 (2000) 511. [27] B. Basu-Mallick, N. Bondyopadhaya, Nucl. Phys. B 757 (2006) 280. [28] B. Basu-Mallick, N. Bondyopadhaya, K. Hikami, D. Sen, Nucl. Phys. B 782 (2007) 276. [29] B. Basu-Mallick, N. Bondyopadhaya, D. Sen, Nucl. Phys. B 795 (2008) 596. [30] D. Bernard, V. Pasquier, D. Serban, Europhys. Lett. 30 (1995) 301. [31] A. Enciso, F. Finkel, A. González-López, M.A. Rodríguez, Nucl. Phys. B 707 (2005) 553. [32] T. Yamamoto, O. Tsuchiya, J. Phys. A: Math. Gen. 29 (1996) 3977. [33] J.C. Barba, F. Finkel, A. González-López, M.A. Rodríguez, Phys. Rev. B 77 (2008) 214422. [34] J.C. Barba, F. Finkel, A. González-López, M.A. Rodríguez, Europhys. Lett. 83 (2008) 27005. [35] M.V. Berry, M. Tabor, Proc. R. Soc. London Ser. A 356 (1977) 375. [36] D. Poilblanc, T. Ziman, J. Bellissard, F. Mila, J. Montambaux, Europhys. Lett. 22 (1993) 537. [37] J.-Ch. Anglès d’Auriac, J.-M. Maillard, C.M. Viallet, J. Phys. A: Math. Gen. 35 (2002) 4801. [38] T. Guhr, A. Müller-Groeling, H.A. Weidenmüller, Phys. Rep. 299 (1998) 189. [39] J. Cigler, Monatsh. Math. 88 (1979) 87. [39] J. Cigler, Monatsh. Math. 88 (1979) 87.
dspace.entity.typePublication
relation.isAuthorOfPublication207092a4-0443-4336-a037-15936f8acc25
relation.isAuthorOfPublication7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc
relation.isAuthorOfPublicationd781a665-7ef6-44e0-a0da-81f722f1b8ad
relation.isAuthorOfPublication.latestForDiscovery207092a4-0443-4336-a037-15936f8acc25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Finkel09.pdf
Size:
546.08 KB
Format:
Adobe Portable Document Format

Collections