An exactly solvable supersymmetric spin chain of BC_N type
dc.contributor.author | Barba, J. C: | |
dc.contributor.author | Finkel Morgenstern, Federico | |
dc.contributor.author | González López, Artemio | |
dc.contributor.author | Rodríguez González, Miguel Ángel | |
dc.date.accessioned | 2023-06-20T03:55:37Z | |
dc.date.available | 2023-06-20T03:55:37Z | |
dc.date.issued | 2009-01-11 | |
dc.description | ©2008 Elsevier B.V. All fights reserved. This work was partially supported by the DGI under grant No. FIS2005-00752, and by the Complutense University of Madrid and the DGUI under grant No. GR74/07-910556. J.C.B. acknowledges the financial support of the Spanish Ministry of Science and Innovation through an FPU scholarship. | |
dc.description.abstract | We construct a new exactly solvable supersymmetric spin chain related to the BC_N extended root system, which includes as a particular case the BC_N version of the Polychronakos-Frahm spin chain. We also introduce a supersymmetric spin dynamical model of Calogero type which yields the new chain in the large coupling limit. This connection is exploited to derive two different closed-form expressions for the chain's partition function by means of Polychronakos's freezing trick. We establish a boson-fermion duality relation for the new chain's spectrum, which is in fact valid for a large class of (not necessarily integrable) spin chains of BC_N type. The exact expressions for the partition function are also used to study the chain's spectrum as a whole, showing that the level density is normally distributed even for a moderately large number of particles. We also determine a simple analytic approximation to the distribution of normalized spacings between consecutive levels which fits the numerical data with remarkable accuracy. Our results provide further evidence that spin chains of Haldane-Shastry type are exceptional integrable models, in the sense that their spacings distribution is not Poissonian, as posited by the Berry-Tabor conjecture for "generic" quantum integrable systems. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGI | |
dc.description.sponsorship | Complutense University of Madrid | |
dc.description.sponsorship | DGUI | |
dc.description.sponsorship | Spanish Ministry of Science and Innovation | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/31338 | |
dc.identifier.doi | 10.1016/j.nuclphysb.2008.08.014 | |
dc.identifier.issn | 0550-3213 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.nuclphysb.2008.08.014 | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44679 | |
dc.issue.number | 3 | |
dc.journal.title | Nuclear physics B | |
dc.language.iso | eng | |
dc.page.final | 714 | |
dc.page.initial | 684 | |
dc.publisher | Elsevier | |
dc.relation.projectID | FIS2005-00752 | |
dc.relation.projectID | GR74/07-910556 | |
dc.relation.projectID | FPU scholarship | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Exactly solvable spin chains | |
dc.subject.keyword | Supersymmetry | |
dc.subject.keyword | Quantum chaos | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | An exactly solvable supersymmetric spin chain of BC_N type | |
dc.type | journal article | |
dc.volume.number | 806 | |
dcterms.references | [1] M. Arikawa, Y. Saiga, Y. Kuramoto, Phys. Rev. Lett. 86 (2001) 3096. [2] M. Arikawa, Y. Saiga, J. Phys. A: Math. Gen. 39 (2006) 10603. [3] R. Hernández, E. López, JHEP 0411 (2004) 079. [4] F.D.M. Haldane, Phys. Rev. Lett. 60 (1988) 635. [5] B.S. Shastry, Phys. Rev. Lett. 60 (1988) 639. [6] A.P. Polychronakos, Phys. Rev. Lett. 70 (1993) 2329. [7] H. Frahm, J. Phys. A: Math. Gen. 26 (1993) L473. [8] J. Hubbard, Proc. R. Soc. London Ser. A 276 (1963) 238. [9] M.C. Gutzwiller, Phys. Rev. Lett. 10 (1963) 159. [10] F. Gebhard, D. Vollhardt, Phys. Rev. Lett. 59 (1987) 1472. [11] F. Gebhard, A.E. Ruckenstein, Phys. Rev. Lett. 68 (1992) 244. [12] N. Kawakami, Phys. Rev. B 46 (1992) 1005. [13] Z.N.C. Ha, F.D.M. Haldane, Phys. Rev. B 46 (1992) 9359. [14] F.D.M. Haldane, Z.N.C. Ha, J.C. Talstra, D. Bernard, V. Pasquier, Phys. Rev. Lett. 69 (1992) 2021. [15] D. Bernard, M. Gaudin, F.D.M. Haldane, V. Pasquier, J. Phys. A: Math. Gen. 26 (1993) 5219. [16] C.F. Dunkl, Trans. Am. Math. Soc. 311 (1989) 167. [17] A.P. Polychronakos, Phys. Rev. Lett. 69 (1992) 703. [18] B. Sutherland, Phys. Rev. A 4 (1971) 2019. [19] B. Sutherland, Phys. Rev. A 5 (1972) 1372. [20] F. Finkel, A. González-López, Phys. Rev. B 72 (2005) 174411. [21] A.P. Polychronakos, Nucl. Phys. B 419 (1994) 553. [22] F. Calogero, J. Math. Phys. 12 (1971) 419. [23] J.A. Minahan, A.P. Polychronakos, Phys. Lett. B 302 (1993) 265. [24] F. Calogero, Lett. Nuovo Cimento 20 (1977) 251. [25] B. Basu-Mallick, H. Ujino, M. Wadati, J. Phys. Soc. Jpn. 68 (1999) 3219. [26] K. Hikami, B. Basu-Mallick, Nucl. Phys. B 566 (2000) 511. [27] B. Basu-Mallick, N. Bondyopadhaya, Nucl. Phys. B 757 (2006) 280. [28] B. Basu-Mallick, N. Bondyopadhaya, K. Hikami, D. Sen, Nucl. Phys. B 782 (2007) 276. [29] B. Basu-Mallick, N. Bondyopadhaya, D. Sen, Nucl. Phys. B 795 (2008) 596. [30] D. Bernard, V. Pasquier, D. Serban, Europhys. Lett. 30 (1995) 301. [31] A. Enciso, F. Finkel, A. González-López, M.A. Rodríguez, Nucl. Phys. B 707 (2005) 553. [32] T. Yamamoto, O. Tsuchiya, J. Phys. A: Math. Gen. 29 (1996) 3977. [33] J.C. Barba, F. Finkel, A. González-López, M.A. Rodríguez, Phys. Rev. B 77 (2008) 214422. [34] J.C. Barba, F. Finkel, A. González-López, M.A. Rodríguez, Europhys. Lett. 83 (2008) 27005. [35] M.V. Berry, M. Tabor, Proc. R. Soc. London Ser. A 356 (1977) 375. [36] D. Poilblanc, T. Ziman, J. Bellissard, F. Mila, J. Montambaux, Europhys. Lett. 22 (1993) 537. [37] J.-Ch. Anglès d’Auriac, J.-M. Maillard, C.M. Viallet, J. Phys. A: Math. Gen. 35 (2002) 4801. [38] T. Guhr, A. Müller-Groeling, H.A. Weidenmüller, Phys. Rep. 299 (1998) 189. [39] J. Cigler, Monatsh. Math. 88 (1979) 87. [39] J. Cigler, Monatsh. Math. 88 (1979) 87. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 207092a4-0443-4336-a037-15936f8acc25 | |
relation.isAuthorOfPublication | 7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc | |
relation.isAuthorOfPublication | d781a665-7ef6-44e0-a0da-81f722f1b8ad | |
relation.isAuthorOfPublication.latestForDiscovery | 207092a4-0443-4336-a037-15936f8acc25 |
Download
Original bundle
1 - 1 of 1