Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Polynomial continuity on l(1)

dc.contributor.authorLlavona, José G.
dc.contributor.authorJoaquín M., Gutiérrez
dc.contributor.authorGonzález, Manuel
dc.date.accessioned2023-06-20T16:57:15Z
dc.date.available2023-06-20T16:57:15Z
dc.date.issued1997
dc.description.abstractA mapping between Banach spaces is said to be polynomially continuous if its restriction to any bounded set is uniformly continuous for the weak polynomial topology. A Banach space X has property(RP) if given two bounded sequences (u(j)), (v(j)) subset of X; we have that Q(u(j)) - Q(v(j)) --> 0 for every polynomial Q on X whenever P(u(j) - v(j)) --> 0 for every polynomial P on XI i.e., the restriction of every polynomial on X to each bounded set is uniformly sequentially continuous for the weak polynomial topology. We show that property (RP) does not imply that every scalar valued polynomial on X must be polynomially continuous.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16256
dc.identifier.doi10.1090/S0002-9939-97-03733-7
dc.identifier.issn0002-9939
dc.identifier.officialurlhttp://www.ams.org/journals/proc/1997-125-05/S0002-9939-97-03733-7/S0002-9939-97-03733-7.pdf
dc.identifier.relatedurlhttp://www.ams.org/journals
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57503
dc.issue.number5
dc.journal.titleProceedings of the American Mathematical Society
dc.language.isoeng
dc.page.final1353
dc.page.initial1349
dc.publisherAmerican Mathematical Society
dc.relation.projectIDPB 94-1052
dc.relation.projectIDPB 93-0452
dc.rights.accessRightsopen access
dc.subject.cdu517.5
dc.subject.keywordPolynomials on Banach spaces
dc.subject.keywordWeak polynomial topology
dc.subject.keywordPolynomials on l(1)
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titlePolynomial continuity on l(1)
dc.typejournal article
dc.volume.number125
dcterms.referencesR. M. Aron, Y. S. Choi and J. G. Llavona, Estimates by polynomials, Bull. Austral. Math. Soc. 52 (1995), 475-486. CMP 96:03 R. M. Aron and J. B. Prolla, Polynomial approximation of diferentiable functions on Banach spaces, J. Reine Angew. Math. 313 (1980), 195-216. MR 81c:41078 T. K. Carne, B. Cole and T. W. Gamelin, A uniform algebra of analytic functions on a Banach space, Trans. Amer. Math. Soc. 314 (1989), 639-659. MR 90i:46098 A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), 351-356. MR 89k:46023 J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, Berlin 1984. MR 85i:46020 J. Mujica, Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amster- dam 1986. MR 88d:46084
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GLlavona15.pdf
Size:
182.44 KB
Format:
Adobe Portable Document Format

Collections