Polynomial continuity on l(1)
dc.contributor.author | Llavona, José G. | |
dc.contributor.author | Joaquín M., Gutiérrez | |
dc.contributor.author | González, Manuel | |
dc.date.accessioned | 2023-06-20T16:57:15Z | |
dc.date.available | 2023-06-20T16:57:15Z | |
dc.date.issued | 1997 | |
dc.description.abstract | A mapping between Banach spaces is said to be polynomially continuous if its restriction to any bounded set is uniformly continuous for the weak polynomial topology. A Banach space X has property(RP) if given two bounded sequences (u(j)), (v(j)) subset of X; we have that Q(u(j)) - Q(v(j)) --> 0 for every polynomial Q on X whenever P(u(j) - v(j)) --> 0 for every polynomial P on XI i.e., the restriction of every polynomial on X to each bounded set is uniformly sequentially continuous for the weak polynomial topology. We show that property (RP) does not imply that every scalar valued polynomial on X must be polynomially continuous. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16256 | |
dc.identifier.doi | 10.1090/S0002-9939-97-03733-7 | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.officialurl | http://www.ams.org/journals/proc/1997-125-05/S0002-9939-97-03733-7/S0002-9939-97-03733-7.pdf | |
dc.identifier.relatedurl | http://www.ams.org/journals | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57503 | |
dc.issue.number | 5 | |
dc.journal.title | Proceedings of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 1353 | |
dc.page.initial | 1349 | |
dc.publisher | American Mathematical Society | |
dc.relation.projectID | PB 94-1052 | |
dc.relation.projectID | PB 93-0452 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.5 | |
dc.subject.keyword | Polynomials on Banach spaces | |
dc.subject.keyword | Weak polynomial topology | |
dc.subject.keyword | Polynomials on l(1) | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Polynomial continuity on l(1) | |
dc.type | journal article | |
dc.volume.number | 125 | |
dcterms.references | R. M. Aron, Y. S. Choi and J. G. Llavona, Estimates by polynomials, Bull. Austral. Math. Soc. 52 (1995), 475-486. CMP 96:03 R. M. Aron and J. B. Prolla, Polynomial approximation of diferentiable functions on Banach spaces, J. Reine Angew. Math. 313 (1980), 195-216. MR 81c:41078 T. K. Carne, B. Cole and T. W. Gamelin, A uniform algebra of analytic functions on a Banach space, Trans. Amer. Math. Soc. 314 (1989), 639-659. MR 90i:46098 A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), 351-356. MR 89k:46023 J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, Berlin 1984. MR 85i:46020 J. Mujica, Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amster- dam 1986. MR 88d:46084 | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1