Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Polynomial continuity on l(1)

dc.contributor.authorLlavona, José G.
dc.contributor.authorJoaquín M., Gutiérrez
dc.contributor.authorGonzález, Manuel
dc.date.accessioned2023-06-20T16:57:15Z
dc.date.available2023-06-20T16:57:15Z
dc.date.issued1997
dc.description.abstractA mapping between Banach spaces is said to be polynomially continuous if its restriction to any bounded set is uniformly continuous for the weak polynomial topology. A Banach space X has property(RP) if given two bounded sequences (u(j)), (v(j)) subset of X; we have that Q(u(j)) - Q(v(j)) --> 0 for every polynomial Q on X whenever P(u(j) - v(j)) --> 0 for every polynomial P on XI i.e., the restriction of every polynomial on X to each bounded set is uniformly sequentially continuous for the weak polynomial topology. We show that property (RP) does not imply that every scalar valued polynomial on X must be polynomially continuous.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16256
dc.identifier.doi10.1090/S0002-9939-97-03733-7
dc.identifier.issn0002-9939
dc.identifier.officialurlhttp://www.ams.org/journals/proc/1997-125-05/S0002-9939-97-03733-7/S0002-9939-97-03733-7.pdf
dc.identifier.relatedurlhttp://www.ams.org/journals
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57503
dc.issue.number5
dc.journal.titleProceedings of the American Mathematical Society
dc.language.isoeng
dc.page.final1353
dc.page.initial1349
dc.publisherAmerican Mathematical Society
dc.relation.projectIDPB 94-1052
dc.relation.projectIDPB 93-0452
dc.rights.accessRightsopen access
dc.subject.cdu517.5
dc.subject.keywordPolynomials on Banach spaces
dc.subject.keywordWeak polynomial topology
dc.subject.keywordPolynomials on l(1)
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titlePolynomial continuity on l(1)
dc.typejournal article
dc.volume.number125
dcterms.referencesR. M. Aron, Y. S. Choi and J. G. Llavona, Estimates by polynomials, Bull. Austral. Math. Soc. 52 (1995), 475-486. CMP 96:03 R. M. Aron and J. B. Prolla, Polynomial approximation of diferentiable functions on Banach spaces, J. Reine Angew. Math. 313 (1980), 195-216. MR 81c:41078 T. K. Carne, B. Cole and T. W. Gamelin, A uniform algebra of analytic functions on a Banach space, Trans. Amer. Math. Soc. 314 (1989), 639-659. MR 90i:46098 A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), 351-356. MR 89k:46023 J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, Berlin 1984. MR 85i:46020 J. Mujica, Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amster- dam 1986. MR 88d:46084
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GLlavona15.pdf
Size:
182.44 KB
Format:
Adobe Portable Document Format

Collections