Synthesis and electrical properties of the pyrochlore-type Gd_(2-y)La_(y)Zr_(2)O_(7) solid solution

Thumbnail Image
Full text at PDC
Publication Date
Díaz Guillén, J. A.
Díaz Guillén, M. R.
Padmasree, K. P.
Almanza, J. M.
Fuentes, A. F.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Sociedad Española de Cerámica y Vidrio
Google Scholar
Research Projects
Organizational Units
Journal Issue
Different compositions in the pyrochlore-type Gd_(2-y)La_(y)Zr_(2)O_(7) solid solution (0 ≤ y ≤ 1) were prepared at room-temperature by mechanically milling stoichiometric mixtures of the corresponding oxides. Irrespective of their lanthanum content, as-prepared powder samples consist of single-phase anion deficient fluorite materials, although long-range ordering of cations and anion vacancies characteristic of pyrochlores was observed in all cases after firing the samples at 1500°C. Interestingly, activation energy for oxygen migration in the series decreases as La-content increases, from 1.13 eV for Gd_(2)Zr_(2)O_(7) to 0.81 eV for GdLaZr_(2)O_(7), whereas ionic conductivity was found to be almost La-content independent, at least for y ≤ 0.8 at T = 500°C and y ≤ 0.4 at T = 800°C. These results are explained in terms of weaker ion-ion interactions in better ordered structures (i.e., as La-content increases) and highlight the importance of structural ordering/disordering in determining the dynamics of mobile oxygen ions.
Partiendo de mezclas estequiométricas de los óxidos correspondientes, se prepararon por molienda mecánica y a temperatura ambiente diferentes composiciones en la solución sólida Partiendo de mezclas estequiométricas de los óxidos correspondientes, se prepararon por molienda mecánica y a temperatura ambiente diferentes composiciones en la solución sólida Gd_(2-y)La_(y)Zr_(2)O_(7) (0 ≤ y ≤ 1) con estructura de tipo pirocloro y conductora de iones oxígeno. Independientemente del contenido de lantano, los polvos extraídos del molino presentaron difractogramas similares al de una fluorita no estequiométrica aunque en todos los casos, el tratamiento térmico a 1500°C indujo la aparición del ordenamiento de largo alcance de cationes y vacancias aniónicas característico de pirocloros. La energía de activación para el proceso de migración de iones oxígeno en la serie disminuye a medida que se incrementa el contenido de lantano, desde 1.13 eV de Gd_(2)Zr_(2)O_(7) hasta 0.81 eV de GdLaZr_(2)O_(7), mientras que la conductividad resultó ser prácticamente independiente del mismo hasta y ≤ 0.8 para T = 500°C e y ≤ 0.4 para T = 800°C. Estos resultados se explican en términos de una menor interacción entre portadores de carga en las estructuras más ordenadas (a medida que se incrementa el contenido de La) y subraya la influencia del orden/desorden estructural en la dinámica de iones móviles.
© Sociedad Española de Cerámica y Vidrio. This work has been carried out with the financial support of Mexican Conacyt (Grant SEP-2003-C02-44075) and Spanish MCYT (MAT2004-3070-C05).
Unesco subjects
1) H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, Thermodynamic analysis of reaction profiles between lanthanum metal oxides (LaMO_(3), M = nickel, cobalt, or manganese) and zirconium oxide, J. Electrochem. Soc., 138, 2719-2727 (1991). 2) Y. Takeda, Y. Sakaki, H.-Y. Tu, M. B. Phillipps, N. Imanishi, O. Yamamoto, Perovskite oxides for the cathode in solid oxide fuel cells, Electrochemistry, 68, 764-770 (2000). 3) H. L. Tuller, Ionic and mixed conductors: materials design and optimization, in eds. F. W. Poulsen, N. Bonanos, S. Linderoth, M. Mogensen, B. Zachau-Chistiansen, High temperature electrochemistry: ceramics and metals, Proceedings 17th Riso International Symposium on Materials Science, Riso National Laboratory, Roskilde, Denmark, pp. 139-153 (1996). 4) M. P. van Dijk, A. J. Burggraaf, A. N. Cormack, C. R. A. Catlow, Defect structures and migration mechanisms in oxide pyrochlores, Solid State Ion., 17, 159-167 (1985). 5) C. L. Wang, W. Pan, Q. Xu, Y. X. Qin, J. D. Wang, Z. X. Qu, M. H. Fang, Effect of point defects on the thermal transport properties of (La_(x)Gd_(1-x))_(2)Zr_(2)O_(7): experimental and theoretical model, Phys. Rev. B, 74, 144109 (2006). 6) L. Minervini, R. W. Grimes, K. E. Sickafus, Disorder in pyrochlore oxides, J. Am. Ceram. Soc., 83, 1873-1878 (2000). 7) T. H. Etsell, S. N. Flengas, The electrical properties of solid oxide electrolytes, Chem. Rev., 70, 339-76 (1970). 8) J. A. Labrincha, J. R. Frade, F. M. B. Marques, La_(2)Zr_(2)O_(7) formed at ceramic electrode/YSZ contacts, J. Mater. Sci., 28, 3809-3813 (1993). 9) C. Heremans, B. J. Wuensch, J. K. Stalick, E. Prince, Fast-ion conducting Y_(2)(Zr_(y)Ti_(1-y))_(2)O_(7) pyrochlores: neutron Rietveld analysis of disorder induced by Zr substitution, J. Solid St. Chem., 117, 108-21 (1995). 10) M. A. Subramanian, G. Aravamudan, G. V. Subba Rao, Oxide pyrochlore-A review, Prog. Solid St. Chem., 15, 55-143 (1985). 11) R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A, 32, 751-767 (1975). 12) A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectric Press, London, 1984. 13) K. L. Ngai, R. W. Rendell, Basic physics of the coupling model: direct experimental evidences, ACS Symposium Series, 676, 45-66 (1997). 14) K. J. Moreno, G. Mendoza-Suárez, A. F. Fuentes, J. García-Barriocanal, C. León, J. Santamaría, Cooperative oxygen dynamics in Gd_(2)Ti_(2-y)Zr_(y)O_(7), Phys. Rev. B, 71, 132301 (2005). 15) K. J. Moreno, A. F. Fuentes, M. Maczka, J. Hanuza, U. Amador, J. Santamaría, C. León, Influence of thermally induced oxygen order on mobile ion dynamics in Gd_(2)Ti_(0.65)Zr_(0.35)O_(7), Phys. Rev. B, 75, 184303 (2007). 16) P. B. Macedo, C. T. Moynihan, R. Bose, Role of ionic diffusion in polarization in vitreous ionic conductors, Phys. Chem. Glasses, 13, 171-179 (1972). 17) K. L. Ngai, C. León, Recent advances in relating macroscopic electrical relaxation data to microscopic movements of the ions in ionically conducting materials, Solid State Ion., 125 81-90 (1999). 18) K. Funke, R. D. Banhatti, C. Cramer, Correlated ionic hopping processes in crystalline and glassy electrolytes resulting in MIGRATION-type and nearly constant-loss-type conductivities, Phys. Chem. Chem. Phys., 7, 157-165 (2005). 19) K. L. Ngai, C. León, Cage decay, near constant loss and crossover to cooperative ion motion in ionic conductors: insight from experimental data, Phys. Rev. B, 66, 064308 (2002). 20) K. L. Ngai, C. León, A quantitative explanation of the difference between nuclear spin relaxation and ionic conductivity relaxation in superionic glasses, J. Non-Cryst. Solids, 315, 124-133 (2003).