Stark ladders in periodically si-delta-doped gaas

Thumbnail Image
Full text at PDC
Publication Date
Méndez Martín, Bianchi
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
We study theoretically the electronic structure of periodically Si delta-doped GaAs subject to a homogeneous electric field applied along the growth direction. The space-charge potential due to delta doping is obtained by means of the Thomas-Fermi approach. Analyzing the change in the density of states in the superlattice introduced in the electric field, we observe a set of equally-spaced sharp peaks corresponding to Stark-ladder resonances. Intrinsic broadening of resonances turns out to be smaller than the level spacing in the whole range of the electric field we consider. We use the inverse participation ratio to evaluate the spatial extent of electron wave functions, and we find that the Stark-ladder spectrum is related to a strong-localization regime at high field.
© 1994 The American Physical Society. The authors thank A. Sanchez and E. Macia for valuable discussions.
Unesco subjects
1. J. Leo and A. MacKinnon, J. Phys. Condens. Matter 1, 1449 (1989). 2. M. C. Chang and Q. Niu, Phys. Rev. B 48, 2215 (1993). 3. M. Ritze, N. J. M. Horing, and R. Enderlein, Phys. Rev. B 47, 10437 (1993). 4. M. H. Degani, Appl. Phys. Lett. 59, 57 (1991). 5. H. Schneider, K. Kawashima, and K. Fujiwara, Appl. Phys. Lett. 44, 5943 (1991). 6. O. Kiihn, N. J. M. Horing, and R. Enderlein, Semicond. Sci. Technol. 8, 513 (1993). 7. J. Bleuse, G. Bastard, and P. Voison, Phys. Rev. B 60, 220 (1988). 8. F. Agulló-Rueda, E. E. Mendez, and J. M. Hong, Phys. Rev. B 40, 1357 (1989). 9. M. M. Dignam and J. E. Sipe, Phys. Rev. Lett. 64, 1797 (1990). 10. M. K. Saker, Phys. Rev. B 43, 4945 (1991). 11. K. Gibb, M. M. Dignam, J. E. Sipe, and A. P. Roth, Phys. Rev. B 48, 8156 (1993). 12. A. C. Maciel, M. Tatham, J. F. Ryan, J. M. Worlock, R. E. Nahory, J. P. Harbinson, and L. T. Florez, Surf. Sci. 228, 251 (1990). 13. J. C. Egues, J. C. Barbosa, A. C. Notari, P. Basmaji, L. Ioriatti, E. Ranz, and J. C. Portal, J. Appl. Phys. 70, 3678 (1991). 14. M. H. Degani, J. Appl. Phys. 70, 4362 (1991). 15. L. Ioriatti, Phys. Rev. B 41, 8340 (1990). 16. B. Mendez, F. Dominguez-Adame, and E. Macia, J. Phys. A 26, 171 (1993). 17. The definition of the DOS for systems displaying continuous energy spectra presents some problems (see Refs. 3 and 6). However, the change in the DOS introduced by the considered structure is a well-defined parameter, as stated in W. Trzeciakowski and M. Gurioli, Phys. Rev. B 44, 3880 (1991). 18. J. Callaway, Quantum Theory of the Solid State (AcademicPress, San Diego, 1991), p. 400. 19. Notice that energies are measured from the Fermi level andnot from the top of the potential ( 1 77Ry' —in t. his scale)in Fig. 1; this allows a direct comparison with previousresults of Egues et al. and other authors, who take 6p' as the zero of energies. In the remainder of the paper, however, we measure energies from the top of the potential. 20. X. G. Zhao, J. Phys. Condens. Matter 4, L383 (1992). 21. R. J. Bell and P. Dean, Discuss. Faraday Soc. 50, 51 (1971