Publication:
Experimental implementation of the gyrator transform

dc.contributor.authorRodrigo Martín-Romo, José Augusto
dc.contributor.authorAlieva, Tatiana Krasheninnikova
dc.contributor.authorCalvo Padilla, María Luisa
dc.date.accessioned2023-06-20T10:42:26Z
dc.date.available2023-06-20T10:42:26Z
dc.date.issued2007-10
dc.description© 2007 Optical Society of America The Spanish Ministry of Education and Science is acknowledged for financial support, project TEC 2005-02180/MIC.
dc.description.abstractThe gyrator transform (GT) promises to be a useful tool in image processing, holography, beam characterization, mode transformation, and quantum information. We introduce what we believe to be the first flexible optical experimental setup that performs the GT for a wide range of transformation parameters. The feasibility of the proposed scheme is demonstrated on the gyrator transformation of Hermite-Gaussian modes. For certain parameters the output mode corresponds to the Laguerre-Gaussian one.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia (MEC), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25503
dc.identifier.citation1. R. Simon and K. B. Wolf, "Structure of the set of paraxial optical systems”, J. Opt. Soc. Am. A 17, 342-355 (2000). 2. K. B. Wolf, Geometric Optics on Phase Space (Springer-Verlag, 2004). 3. J. A. Rodrigo, T. Alieva, and M. L. Calvo, "Gyrator transform: properties and applications”, Opt. Express 15, 2190-2203 (2007). 4. H. M. Ozaktas, Z. Zalevsky, and M. Alper Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001). 5. J. A. Rodrigo, T. Alieva, and M. L. Calvo, "Gyrator transform for image processing”, Opt. Commun. , in press, doi: 10.1016/j.optcom.2007.06.023. 6. G. F. Calvo, "Wigner representation and geometric transformations of optical orbital angular momentum spatial modes”, Opt. Lett. 30, 1207-1209 (2005). 7. T. Alieva and M. Bastiaans, "Orthonormal mode sets for the two-dimensional fractional Fourier transformation”, Opt. Lett. 32, 1226-1228 (2007). 8. E. G. Abramochkin and V. G. Volostnikov, "Generalized Gaussian beams”, J. Opt. A, Pure Appl. Opt. 6, S157-S161 (2004). 9. J. A. Rodrigo, T. Alieva, and M. L. Calvo, "Optical system design for ortho-symplectic transformations in phase space”, J. Opt. Soc. Am. A 23, 2494-2500 (2006). 10. J. Shamir, "Cylindrical lens described by operator algebra”, Appl. Opt. 18, 4195-4202 (1979). 11. G. Nemes and A. E. Seigman, "Measurement of all ten second-order moments of an astigmatic beam by use of rotating simple astigmatic (anamorphic) optics”, J. Opt. Soc. Am. A 11, 2257-2264 (1994). 12. V.A.Soifer, ed., Methods for Computer Design of Diffractive Optical Elements (Wiley, 2002).
dc.identifier.doi10.1364/JOSAA.24.003135
dc.identifier.issn1084-7529
dc.identifier.officialurlhttp://dx.doi.org/10.1364/JOSAA.24.003135
dc.identifier.relatedurlhttp://www.opticsinfobase.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51042
dc.issue.number10
dc.journal.titleJournal of The Optical Society Of America A-Optics Image Science and Vision
dc.language.isoeng
dc.page.final3139
dc.page.initial3135
dc.publisherOptical Society of America
dc.relation.projectIDTEC 2005- 02180/MIC
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordSystems
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleExperimental implementation of the gyrator transform
dc.typejournal article
dc.volume.number24
dspace.entity.typePublication
relation.isAuthorOfPublicatione2846481-608d-43dd-a835-d70f73a4dd48
relation.isAuthorOfPublication.latestForDiscoverye2846481-608d-43dd-a835-d70f73a4dd48
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CalvoML35libre.pdf
Size:
497.58 KB
Format:
Adobe Portable Document Format
Collections