Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Investigating a Deep Learning Method to Analyze Images from Multiple Gamma-ray Telescopes

Loading...
Thumbnail Image

Full text at PDC

Publication date

2019

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

A. Brill, Q. Feng, T. B. Humensky, B. Kim, D. Nieto, and T. Miener, in 2019 New York Scientific Data Summit (NYSDS) (IEEE, New York, NY, USA, 2019), pp. 1–4.

Abstract

Imaging atmospheric Cherenkov telescope (IACT) arrays record images from air showers initiated by gamma rays entering the atmosphere, allowing astrophysical sources to be observed at very high energies. To maximize IACT sensitivity, gamma-ray showers must be efficiently distinguished from the dominant background of cosmic-ray showers using images from multiple telescopes. A combination of convolutional neural networks (CNNs) with a recurrent neural network (RNN) has been proposed to perform this task. Using CTLearn, an open source Python package using deep learning to analyze data from IACTs, with simulated data from the upcoming Cherenkov Telescope Array (CTA), we implement a CNN-RNN network and find no evidence that sorting telescope images by total amplitude improves background rejection performance.

Research Projects

Organizational Units

Journal Issue

Description

Se deposita versión preprint de la ponencia

UCM subjects

Keywords