Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Investigating a Deep Learning Method to Analyze Images from Multiple Gamma-ray Telescopes

dc.conference.date12-14 Jun 2019
dc.conference.placeNueva York
dc.conference.title2019 New York Scientific Data Summit, NYSDS 2019 - Proceedings
dc.contributor.authorBrill, A.
dc.contributor.authorFeng, Q.
dc.contributor.authorHumensky, T. B.
dc.contributor.authorKim, B.
dc.contributor.authorNieto Castaño, Daniel
dc.contributor.authorMiener, Tjark
dc.date.accessioned2023-11-02T09:55:11Z
dc.date.available2023-11-02T09:55:11Z
dc.date.issued2019
dc.descriptionSe deposita versión preprint de la ponencia
dc.description.abstractImaging atmospheric Cherenkov telescope (IACT) arrays record images from air showers initiated by gamma rays entering the atmosphere, allowing astrophysical sources to be observed at very high energies. To maximize IACT sensitivity, gamma-ray showers must be efficiently distinguished from the dominant background of cosmic-ray showers using images from multiple telescopes. A combination of convolutional neural networks (CNNs) with a recurrent neural network (RNN) has been proposed to perform this task. Using CTLearn, an open source Python package using deep learning to analyze data from IACTs, with simulated data from the upcoming Cherenkov Telescope Array (CTA), we implement a CNN-RNN network and find no evidence that sorting telescope images by total amplitude improves background rejection performance.eng
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.facultyInstituto de Física de Partículas y del Cosmos (IPARCOS)
dc.description.refereedTRUE
dc.description.sponsorshipNational Science Foundation
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.statuspub
dc.identifier.citationA. Brill, Q. Feng, T. B. Humensky, B. Kim, D. Nieto, and T. Miener, in 2019 New York Scientific Data Summit (NYSDS) (IEEE, New York, NY, USA, 2019), pp. 1–4.
dc.identifier.doi10.1109/nysds.2019.8909697
dc.identifier.isbn978-1-7281-5235-6
dc.identifier.officialurlhttps://doi.org/10.1109/nysds.2019.8909697
dc.identifier.relatedurlhttps://ieeexplore.ieee.org/document/8909697
dc.identifier.relatedurlhttps://arxiv.org/pdf/2001.03602
dc.identifier.urihttps://hdl.handle.net/20.500.14352/88529
dc.language.isoeng
dc.relation.projectIDPHY-1229205
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//FPA2015-73913-JIN
dc.rights.accessRightsrestricted access
dc.subject.cdu539.1
dc.subject.keywordAstrophysics
dc.subject.keywordDeep learning
dc.subject.keywordConvolutional neural networks
dc.subject.keywordRecurrent neural networks
dc.subject.ucmFísica nuclear
dc.subject.unesco2206 Física Molecular
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleInvestigating a Deep Learning Method to Analyze Images from Multiple Gamma-ray Telescopesen
dc.typeconference paper
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAuthorOfPublication60928160-a862-4814-a08f-4d80c6a1cdab
relation.isAuthorOfPublication5bb652bb-7017-4934-8428-080e9df8739d
relation.isAuthorOfPublication.latestForDiscovery60928160-a862-4814-a08f-4d80c6a1cdab

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Investigating_a_Deep_Learning_Method.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format