Investigating a Deep Learning Method to Analyze Images from Multiple Gamma-ray Telescopes
dc.conference.date | 12-14 Jun 2019 | |
dc.conference.place | Nueva York | |
dc.conference.title | 2019 New York Scientific Data Summit, NYSDS 2019 - Proceedings | |
dc.contributor.author | Brill, A. | |
dc.contributor.author | Feng, Q. | |
dc.contributor.author | Humensky, T. B. | |
dc.contributor.author | Kim, B. | |
dc.contributor.author | Nieto Castaño, Daniel | |
dc.contributor.author | Miener, Tjark | |
dc.date.accessioned | 2023-11-02T09:55:11Z | |
dc.date.available | 2023-11-02T09:55:11Z | |
dc.date.issued | 2019 | |
dc.description | Se deposita versión preprint de la ponencia | |
dc.description.abstract | Imaging atmospheric Cherenkov telescope (IACT) arrays record images from air showers initiated by gamma rays entering the atmosphere, allowing astrophysical sources to be observed at very high energies. To maximize IACT sensitivity, gamma-ray showers must be efficiently distinguished from the dominant background of cosmic-ray showers using images from multiple telescopes. A combination of convolutional neural networks (CNNs) with a recurrent neural network (RNN) has been proposed to perform this task. Using CTLearn, an open source Python package using deep learning to analyze data from IACTs, with simulated data from the upcoming Cherenkov Telescope Array (CTA), we implement a CNN-RNN network and find no evidence that sorting telescope images by total amplitude improves background rejection performance. | eng |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.faculty | Instituto de Física de Partículas y del Cosmos (IPARCOS) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | National Science Foundation | |
dc.description.sponsorship | Ministerio de Economía, Comercio y Empresa (España) | |
dc.description.status | pub | |
dc.identifier.citation | A. Brill, Q. Feng, T. B. Humensky, B. Kim, D. Nieto, and T. Miener, in 2019 New York Scientific Data Summit (NYSDS) (IEEE, New York, NY, USA, 2019), pp. 1–4. | |
dc.identifier.doi | 10.1109/nysds.2019.8909697 | |
dc.identifier.isbn | 978-1-7281-5235-6 | |
dc.identifier.officialurl | https://doi.org/10.1109/nysds.2019.8909697 | |
dc.identifier.relatedurl | https://ieeexplore.ieee.org/document/8909697 | |
dc.identifier.relatedurl | https://arxiv.org/pdf/2001.03602 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/88529 | |
dc.language.iso | eng | |
dc.relation.projectID | PHY-1229205 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FPA2015-73913-JIN | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 539.1 | |
dc.subject.keyword | Astrophysics | |
dc.subject.keyword | Deep learning | |
dc.subject.keyword | Convolutional neural networks | |
dc.subject.keyword | Recurrent neural networks | |
dc.subject.ucm | Física nuclear | |
dc.subject.unesco | 2206 Física Molecular | |
dc.subject.unesco | 2207 Física Atómica y Nuclear | |
dc.title | Investigating a Deep Learning Method to Analyze Images from Multiple Gamma-ray Telescopes | en |
dc.type | conference paper | |
dc.type.hasVersion | AM | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 60928160-a862-4814-a08f-4d80c6a1cdab | |
relation.isAuthorOfPublication | 5bb652bb-7017-4934-8428-080e9df8739d | |
relation.isAuthorOfPublication.latestForDiscovery | 60928160-a862-4814-a08f-4d80c6a1cdab |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Investigating_a_Deep_Learning_Method.pdf
- Size:
- 1.39 MB
- Format:
- Adobe Portable Document Format