On bifurcation from infinity: a compactification approach

dc.contributor.authorArrieta Algarra, José María
dc.contributor.authorFernandes, Juliana
dc.contributor.authorLappicy, Phillipo
dc.date.accessioned2025-10-09T11:34:32Z
dc.date.available2025-10-09T11:34:32Z
dc.date.issued2025
dc.descriptionAcuerdos Transformativos CRUE 2025
dc.description.abstractWe consider a scalar parabolic partial differential equation on the interval with nonlinear boundary conditions that are asymptotically sublinear. As the parameter crosses critical values (e.g. the Steklov eigenvalues), it is known that there are large equilibria that arise through a bifurcation from infinity (i.e., such equilibria converge, after rescaling, to the Steklov eigenfunctions). We provide a compactification approach to the study of such unbounded bifurcation curves of equilibria, their stability, and heteroclinic orbits. In particular, we construct an induced semiflow at infinity such that the Steklov eigenfunctions are equilibria. Moreover, we prove the existence of infinite-time blow-up solutions that converge, after rescaling, to certain eigenfunctions that are equilibria of the induced semiflow at infinity.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationArrieta, J. M., Fernandes, J., & Lappicy, P. On bifurcation from infinity: a compactification approach. Calculus of Variations and Partial Differential Equations. 2025; 64(3): 1-18.
dc.identifier.doi10.1007/s00526-025-02945-3
dc.identifier.issn0944-2669
dc.identifier.issn1432-0835
dc.identifier.urihttps://hdl.handle.net/20.500.14352/124730
dc.journal.titleCalculus of Variations and Partial Differential Equations
dc.language.isoeng
dc.publisherSpringer Nature Link
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordBlow-up in context of PDEs
dc.subject.keywordDynamical systems and ergodic theory
dc.subject.keywordNonlinear parabolic equations
dc.subject.keywordPartial differential equations
dc.subject.keywordTopological dynamics
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1206.13 Ecuaciones Diferenciales en Derivadas Parciales
dc.titleOn bifurcation from infinity: a compactification approach
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a
relation.isAuthorOfPublication.latestForDiscovery2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arrieta_bifurcation.pdf
Size:
695.04 KB
Format:
Adobe Portable Document Format

Collections