On bifurcation from infinity: a compactification approach
| dc.contributor.author | Arrieta Algarra, José María | |
| dc.contributor.author | Fernandes, Juliana | |
| dc.contributor.author | Lappicy, Phillipo | |
| dc.date.accessioned | 2025-10-09T11:34:32Z | |
| dc.date.available | 2025-10-09T11:34:32Z | |
| dc.date.issued | 2025 | |
| dc.description | Acuerdos Transformativos CRUE 2025 | |
| dc.description.abstract | We consider a scalar parabolic partial differential equation on the interval with nonlinear boundary conditions that are asymptotically sublinear. As the parameter crosses critical values (e.g. the Steklov eigenvalues), it is known that there are large equilibria that arise through a bifurcation from infinity (i.e., such equilibria converge, after rescaling, to the Steklov eigenfunctions). We provide a compactification approach to the study of such unbounded bifurcation curves of equilibria, their stability, and heteroclinic orbits. In particular, we construct an induced semiflow at infinity such that the Steklov eigenfunctions are equilibria. Moreover, we prove the existence of infinite-time blow-up solutions that converge, after rescaling, to certain eigenfunctions that are equilibria of the induced semiflow at infinity. | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.status | pub | |
| dc.identifier.citation | Arrieta, J. M., Fernandes, J., & Lappicy, P. On bifurcation from infinity: a compactification approach. Calculus of Variations and Partial Differential Equations. 2025; 64(3): 1-18. | |
| dc.identifier.doi | 10.1007/s00526-025-02945-3 | |
| dc.identifier.issn | 0944-2669 | |
| dc.identifier.issn | 1432-0835 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/124730 | |
| dc.journal.title | Calculus of Variations and Partial Differential Equations | |
| dc.language.iso | eng | |
| dc.publisher | Springer Nature Link | |
| dc.rights | Attribution 4.0 International | en |
| dc.rights.accessRights | open access | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.keyword | Blow-up in context of PDEs | |
| dc.subject.keyword | Dynamical systems and ergodic theory | |
| dc.subject.keyword | Nonlinear parabolic equations | |
| dc.subject.keyword | Partial differential equations | |
| dc.subject.keyword | Topological dynamics | |
| dc.subject.ucm | Ecuaciones diferenciales | |
| dc.subject.unesco | 1206.13 Ecuaciones Diferenciales en Derivadas Parciales | |
| dc.title | On bifurcation from infinity: a compactification approach | |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a | |
| relation.isAuthorOfPublication.latestForDiscovery | 2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a |
Download
Original bundle
1 - 1 of 1


