On the varieties of nilpotent Lie algebras of dimension 7 and 8
dc.contributor.author | Goze, Michel | |
dc.contributor.author | Ancochea Bermúdez, José María | |
dc.date.accessioned | 2023-06-20T18:43:23Z | |
dc.date.available | 2023-06-20T18:43:23Z | |
dc.date.issued | 1992-02-28 | |
dc.description.abstract | Let Nn be the variety of n-dimensional complex nilpotent Lie algebras. We know that this algebraic variety is reducible for n≥11 and irreducible for n≤6. In this work we prove that N7 is composed of two algebraic components and that N8 is also reducible | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21094 | |
dc.identifier.doi | 10.1016/0022-4049(92)90080-Y | |
dc.identifier.issn | 0022-4049 | |
dc.identifier.officialurl | http://0-www.sciencedirect.com.cisne.sim.ucm.es/science/article/pii/002240499290080Y | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58430 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of Pure and Applied Algebra | |
dc.language.iso | eng | |
dc.page.final | 140 | |
dc.page.initial | 131 | |
dc.publisher | Elsevier Science | |
dc.rights | Atribución-NoComercial 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/3.0/es/ | |
dc.subject.cdu | 512.554.3 | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | On the varieties of nilpotent Lie algebras of dimension 7 and 8 | |
dc.type | journal article | |
dc.volume.number | 77 | |
dcterms.references | J.M. Ancochea Bermudez and M. Goze. Sur la classification des algèbres de Lie nilpotentes de dimension 7, C.R. Acad. Sci. Paris 302 (1086) 611-613. J.M. Ancochea Bermudez and M. Gaze, Classification des algèbres de Lie filiformes de dimension 8, Arch. Math. SO (IYXX) Sl I-525. J.M. Ancochea Bermudez and M. Goze, Classification des algèbres nilpotentes complexes de dimension 7. Arch. Math. 51 (1989) 175-185. J.M. Ancochea Bermudez and M. Goze. Sur la variété des lois nilpotentes de dimension 9, Rend. Sem. Fat. Sci. Univ. Cagliari 58 (l-2) (198X). R. Caries, Sur les algèbres de Lie caracteristiquement nilpotentes. Preprint. Univ. Poitiers, 1984. M. Goze. Perturbations of Lie algebras structures. NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 197 (1988). M. Goze and J.M. Ancochea Bermudez, Algebres de Lie rigides. Indag. Math. 8X (1985) 397-41.5. M. Goze and N. Makhlouf, Calcul du HZ( g, g) sur IBMPC. Preprint, Univ. Mulhouse, 1988. F. Grunewald and .I. O‘Halloran, Varieties of nilpotent Lie algebras of dimension less than six, J. Algebra 112 (1988) 315-325. G. Seeley, Degenerations of h-dimensional nilpotent Lit algebras on C. Comm. Algebra 18 (10)(1990) 3493-350s. M. Vcrgne. Sur la variete des lois nilpotentes, These, Paris, 1066. M. Vergne, Cohomologic des algèbres de Lie nilpotentes, Bull. Sot. Math. France 98 (1970)81-116. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8afd7745-e428-4a77-b1ff-813045b673fd | |
relation.isAuthorOfPublication.latestForDiscovery | 8afd7745-e428-4a77-b1ff-813045b673fd |
Download
Original bundle
1 - 1 of 1