Ion kinetic transport in TJ-II
Loading...
Official URL
Full text at PDC
Publication date
2008
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citation
Abstract
The ion Drift Kinetic Equation (DKE) which describes the ion coUisional transport is solved for the TJ-II device plasmas. This non-linear equation is computed by peribrming a mean field iterative calculation. In each step of the calculation, a Fokker-Planck equation is solved by means of the Langevin approach: one million particles are followed in a realistic TJ-II magnetic configuration, taking into account collisions and electric field. This allows to avoid the assumptions made in the usual neoclassical approach, namely considering radially narrow particle trajectories, diffusive transport, energy conservation and infinite parallel transport. As a consequence, global features of transport, not present in the customary neoclassical models, appear: non-diffusive transport and asymmetries on the magnetic surfaces.
Description
© 2008 American Institute of Physics. BIFI International Congress (111th. 2008. Zaragoza, Spain). We acknowledge partial financial support from MEC (Spain), through research contract FIS2006-08533-C03, European Commission through contracts EGEE-II-03I688 and int.eu.grid 031857, and from BSCH-UCM. J.L. Velasco is a DGA (Aragón, Spain) fellow. Great accuracy has been achieved thanks to the use of the computing platform 0048257301 Zivis [27].