Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Ion kinetic transport in TJ-II

Loading...
Thumbnail Image

Full text at PDC

Publication date

2008

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics
Citations
Google Scholar

Citation

Abstract

The ion Drift Kinetic Equation (DKE) which describes the ion coUisional transport is solved for the TJ-II device plasmas. This non-linear equation is computed by peribrming a mean field iterative calculation. In each step of the calculation, a Fokker-Planck equation is solved by means of the Langevin approach: one million particles are followed in a realistic TJ-II magnetic configuration, taking into account collisions and electric field. This allows to avoid the assumptions made in the usual neoclassical approach, namely considering radially narrow particle trajectories, diffusive transport, energy conservation and infinite parallel transport. As a consequence, global features of transport, not present in the customary neoclassical models, appear: non-diffusive transport and asymmetries on the magnetic surfaces.

Research Projects

Organizational Units

Journal Issue

Description

© 2008 American Institute of Physics. BIFI International Congress (111th. 2008. Zaragoza, Spain). We acknowledge partial financial support from MEC (Spain), through research contract FIS2006-08533-C03, European Commission through contracts EGEE-II-03I688 and int.eu.grid 031857, and from BSCH-UCM. J.L. Velasco is a DGA (Aragón, Spain) fellow. Great accuracy has been achieved thanks to the use of the computing platform 0048257301 Zivis [27].

Unesco subjects

Keywords

Collections