Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Ion kinetic transport in TJ-II

dc.contributor.authorVelasco, J. L.
dc.contributor.authorCastejón, F.
dc.contributor.authorFernández Pérez, Luis Antonio
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorTarancón, A.
dc.date.accessioned2023-06-20T11:17:14Z
dc.date.available2023-06-20T11:17:14Z
dc.date.issued2008
dc.description© 2008 American Institute of Physics. BIFI International Congress (111th. 2008. Zaragoza, Spain). We acknowledge partial financial support from MEC (Spain), through research contract FIS2006-08533-C03, European Commission through contracts EGEE-II-03I688 and int.eu.grid 031857, and from BSCH-UCM. J.L. Velasco is a DGA (Aragón, Spain) fellow. Great accuracy has been achieved thanks to the use of the computing platform 0048257301 Zivis [27].
dc.description.abstractThe ion Drift Kinetic Equation (DKE) which describes the ion coUisional transport is solved for the TJ-II device plasmas. This non-linear equation is computed by peribrming a mean field iterative calculation. In each step of the calculation, a Fokker-Planck equation is solved by means of the Langevin approach: one million particles are followed in a realistic TJ-II magnetic configuration, taking into account collisions and electric field. This allows to avoid the assumptions made in the usual neoclassical approach, namely considering radially narrow particle trajectories, diffusive transport, energy conservation and infinite parallel transport. As a consequence, global features of transport, not present in the customary neoclassical models, appear: non-diffusive transport and asymmetries on the magnetic surfaces.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMEC (Spain)
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipBSCH-UCM (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/38311
dc.identifier.doi10.1063/1.3033356
dc.identifier.issn0094-243x
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.3033356
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51918
dc.journal.titleAIP conference proceedings: large scale simulations of complex systems, condensed matter and fusion plasma
dc.language.isoeng
dc.page.final123
dc.page.initial109
dc.publisherAmerican Institute of Physics
dc.relation.projectIDFIS2006-08533-C03
dc.relation.projectIDEGEE-II-03I688
dc.relation.projectIDint.eu.grid 031857
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.cdu51-73
dc.subject.keywordRadial electric-field
dc.subject.keywordECRH plasmas
dc.subject.keywordNeoclassical transport
dc.subject.keywordHeat confinement
dc.subject.keywordStellarator
dc.subject.keywordSimulations
dc.subject.keywordReduction.
dc.subject.ucmFísica (Física)
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.unesco22 Física
dc.titleIon kinetic transport in TJ-II
dc.typejournal article
dc.volume.number1071
dcterms.references1. C. Alejaldre, et al, Fusion Technology, 17, 131 (1990). 2. V. Tribaldos, J. Guasp, Plasma Phys. Control. Fusion, 47, 545 (2005). 3. W. Lotz, P. Merkel, J. Nürenberg, E. Strumberger, Plasma Physics and Controlled Fusion, 34, 1037 (1992). 4. S.G. Shasharina, J.R. Cary, Nuclear Fusion, 33, 648 (1993). 5. T. Kurki-Suonio, et al, Nucl. Fusion, 42, 725 (2002). 6. T. Kiviniemi, et al, "Ripple-induced fast ion and thermal ion losses", 32nd. 2nd. EPS Plasma Phys. Conference, Tarragona, Spain, 2005. 7. T. Koskela, et al, "Alpha particle orbits in a locally perturbed ITER 3D magnetic field", in 35th. EPS Plasma Phys. Conference, Crete, Greece, 2008. 8. F. Castejón, et al., Fusion Science and Technology, 50, 412 (2006). 9. F. Castejón, et al., Plasma Phys. Control. Fusion, 49, 753 (2007). 10. S. Satake, et al., Nucl. Fusion, 45, 1362 (2005). 11. W.X. Wang, et al., Comp. Phys. Commun., 164, 178 (2004). 12. M.A. Ochando, F. Medina, Fusion Sci. Technol., 50, 313 (2006). 13. J.L. Velasco, et al., Nucl. Fusion, 48, 065008 (2008). 14. M. Yokoyama, et al., Fusion Sci. Technol., 50, 327 (2006). 15. A. Fujisawa, et al., Phys. Rev. Lett., 82, 2669 (1999). 16. H. Maassberg, et al., Phys. Plasmas, 7, 295 (2000). 17. K. Ida, et al., Phys. Rev. Lett., 86, 5297 (2001). 18. F. Castejón, et al., Nucl. Fusion, 42, 271 (2002). 19. T. Estrada, et al., Nucl. Fusion, 47, 305 (2007). 20. R.J. Goldston, P.H. Rutherford, Introduction to Plasma Physics, IOP Publishing, Bristol, 1995. 21. T.S. Chen, A General Form of the Coulomb Scattering Operators for Monte Carlo Simulations and a Note on the Guiding Center Equations in Different Magnetic Coordinate Conventions, Max-Planck-Institut für Plasmaphysik IPP 0/50, Garching, 1988. 22. A. Boozer, G. Kuo-Petravic, Plasma Physics, 24, 851 (1981). 23. M.N. Rosenbluth, W. MacDonald, D. Judd, Phys. Rev., 107, 1 (1957). 24. P.E. Kloeden, R.A. Pearson, The numerical solution of stochastic differential equations, J. Austral. Math. Soc. Ser., B20, pp.8-12, 1977. 25. J. Guasp, M. Liniers, Nuclear Fusion, 40, 397 (2000). 26. J.M. Fontdecaba, et al., Fusion Sci. Technol., 46, 271 (2004). 27. B. Antolí, et al., "ZIVIS: A City Computing Platform Based on Volunteer Computing" Spanish Conference on E-Science Grid Computing Proceedings, Madrid, 2007, pp. 153.
dspace.entity.typePublication
relation.isAuthorOfPublication146096b1-5825-4230-8ad9-b2dad468673b
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublication.latestForDiscovery146096b1-5825-4230-8ad9-b2dad468673b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FernándezPérezLuisAntonio27LIBRE.pdf
Size:
680.11 KB
Format:
Adobe Portable Document Format

Collections