Symplectic forms on six dimensional real solvable Lie algebras

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
World Scientific
Google Scholar
Research Projects
Organizational Units
Journal Issue
The author constructs the symplectic structures on real, solvable, nonnilpotent Lie algebras of dimension six. The work falls into two cases, when the algebra is decomposable into two lower dimensional ideals and when it is indecomposable with four dimensional nilradical. It remains to consider the indecomposable case when the nilradical has dimension five. Also given are the Mauer-Cartan equations of the indecomposable, solvable, non-nilpotent Lie algebras in dimension three and five and those of dimension six that have a four-dimensional nilradical.
UCM subjects
Unesco subjects
J. M. Ancochea, R. Campoamor-Stursberg. On the cohomology of frobeniusian model Lie algebras, Forum Math. 16 (2004), 249-262. J. M. Ancochea, R. Campoamor-Stursberg. Symplectic forms and products by generators,Comm. Algebra 30 (2002), 4235-4249. A. Andrada, M. L. Barberis, I. G. Dotti and G. P. Ovando. Product structures on four dimensional solvable Lie algebras, Homology Homotopy Appl. 7 (2005), 9-37. N. Boyom. Models for solvable symplectic Lie groups, Indiana Univ. Math. J. 42 (1993), 1149-1168. R. Campoamor-Stursberg. Contractions of Lie algebras and generalized Casimir invariants, Acta Phys. Polon. B 34 (2003), 3901-3920. R. Campoamor-Stursberg. An alternative interpretation of the Beltrametti-Blasi formula by means of differential forms, Phys. Lett. A 327 (2004), 138-145. B.-Y. Chu. Symplectic homogeneous spaces, Trans. Amer. Math. Soc. 197 (1974), 145-159. L. A. Cordero, M. Fernández and L. Ugarte. Abelian complex structures on 6-dimensional compact nilmanifolds, Comment. Math. Univ. Carolinae 43 (2002), 215-229. Y. Khakimdjanov, M. Goze, A. Medina. Symplectic or contact structures on Lie groups, Differential Geom. Appl. 21 (2004), 41-54. M. Goze, A. Bouyakoub. Sur les alg`ebres de Lie munies d’une forme symplectique, Rend. Sem. Fac. Sci. Univ. Cagliari 57 (1987), 85-97. J. Hano. On Kählerian homogeneous spaces of unimodular Lie groups, Amer. J. Math. 79 (1957), 885-900. B. S. Kruglikov. Symplectic and contact Lie algebras with application to Monge-Ampère equations, Proc. of Steklov Mathematical Inst. 221 (1998), 232-246. A. Medina, P. Revoy. Groupes de Lie ` structure symplectique invariante, Math. Sci. Res. Inst. Publ., 20 (1989), 247–266, G. M. Mubarakzyanov. Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element, Izv. Vysˇs. Uˇcebn. Zaved. Matematika 35 (1963), 104-116. G. M. Mubarakzyanov. On solvable Lie algebras, Izv. Vysˇs. Uˇcehn. Zaved. Matematika 32(1963), 114-123. G. M. Mubarakzyanov. The classification of the real structure of five dimensional Lie algebras, Izv. Vysˇs. Uˇcehn. Zaved. Matematika 34 (1963), 99-106. G. P. Ovando. Four dimensional symplectic Lie algebras, available at arXiv:math.DG/0407501, 2004. P. Turkowski. Solvable Lie algebras of dimension six. J. Math. Phys. 31 (1990), 1344-1350. P. Turkowski. Low-dimensional real Lie algebras, J. Math. Phys. 29 (1988), 2139-2144.