Streaming potential across cation-exchange membranes in methanol-water electrolyte solutions

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Academic Press Inc Elsevier Science
Google Scholar
Research Projects
Organizational Units
Journal Issue
Streaming potential measurements across charged membranes separating two equal solutions have been carried out. Two cation-exchange membranes with different cross-linked and swelling properties (Ionics and Nafion membranes) and methanol-water electrolyte solutions of KCl have been used in the experiments. The obtained results show that the streaming potential is higher for the Ionics membrane and that the values depend on the methanol content of the solutions. A different behavior is found in the dependence of the streaming potential on the methanol percentage for each membrane. The study of the relaxation times in the decay of electrokinetic steady states of streaming potential has been carried out from the time dependence of the streaming potential when the pressure difference through the membrane is suppressed. The results show the existence of two different parts or partial relaxations, mechanical and electric. A different behavior of the mechanical relaxation time with the methanol percentage has been found for the two membranes, but any significant difference between their electric relaxation times. These differences have been explained in terms of the different degree of swelling of the membranes used.
 2005 Elsevier Inc.
UCM subjects
Unesco subjects
[1] T. Moritz, S. Benfer, P. Arki, G. Tomandl, Colloids Surf. A Physicochem. Eng. Aspects 195 (2001) 25. [2] M. Sbaï, P. Fievet, A. Szymczyk, B. Aoubiza, A. Vidonne, A. Foissy, J. Membr. Sci. 215 (2003) 1. [3] P. Fievet, M. Sbaï, A. Szymczyk, A. Vidonne, J. Membr. Sci. 226 (2003) 227. [4] C. Exartier, S. Maximovitch, B. Baroux, Corros. Sci. 46 (2004) 1777. [5] R.P. Rastogi, G.P. Mishra, P.C. Pandey, K. Bala, K. Kumar, J. Colloid Interface Sci. 217 (1999) 275. [6] R.P. Rastogi, R.C. Srivastava, S.N. Singh, Chem. Rev. 93 (1993) 1945. [7] S.R. De Groot, Thermodynamics of Irreversible Processes, fourth ed., North Holland, Amsterdam, 1966. [8] I. Prigogine, Introduction of Thermodynamic of Irreversible Processes, third ed., Wiley, New York, 1968. [9] S. Kjelstrup, T. Okada, M. Ottøy, in: T.S. Sørensem (Ed.), Surface Chemistry and Electrochemistry of Membranes, Dekker, New York, 1999, Chap. 13. [10] T. Okada, S. Kjelstrup, H. Hanche-Olsen, J. Membr. Sci. 66 (1992) 179. [11] V.M. Barragán, C. Ruiz-Bauzá, J. Non-Equilib. Thermodyn. 22 (1997) 374. [12] D. Nandan, H. Mohan, R.M. Iyer, J. Membr. Sci. 71 (1992) 69. [13] J.M. Reynard, C. Larchet, G. Bulvestre, B. Auclair, J. Membr. Sci. 67 (1992) 57. [14] V.M. Barragán, C. Ruiz-Bauzá, J.P.G. Villaluenga, B. Seoane, 13th Annual Meeting of the North American Membrane Society, Proceedings, Long Beach, CA, 2002, p. 26. [15] JO’M. Bockris, A.K.N. Reddy, Modern Electrochemistry, vol. 1, Plenum/Rosseta, New York, 1973. [16] T.J. Chou, A. Tanioka, J. Membr. Sci. 144 (1998) 275. [17] V.M. Barragán, C. Ruiz-Bauzá, J. Colloid Interface Sci. 247 (2002) 138. [18] V.M. Barragán, C. Ruiz-Bauzá, J.P.G. Villaluenga, B. Seoane, J. Colloid Interface Sci. 236 (2004) 109. [19] V.S. Bagotzky, Fundamental of Electrochemistry, Plenum Press, New York, 1993. [20] P. Wang, A. Anderko, R.D. Young, Fluid Phase Equilib. 226 (2004) 71. [21] E. Skou, P. Kauranen, J. Hentschel, Solid State Ionics 97 (1997) 333. [22] X. Ren, T.E. Springer, S. Gottesfeld, J. Electrochem. Soc. 147 (2000) 92. [23] J.A. Ibáñez, J. Forte, A. Hernández, F. Tejerían, J. Membr. Sci. 36 (1988) 45. [24] C. Molina, L. Victoria, A. Arenas, J.A. Ibáñez, J. Membr. Sci. 163 (1999) 239.