Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On orthogonal polynomials spanning a non-standard flag

Loading...
Thumbnail Image

Full text at PDC

Publication date

2012

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Mathematical Soc
Citations
Google Scholar

Citation

Abstract

We survey some recent developments in the theory of orthogonal polynomials defined by differential equations. The key finding is that there exist orthogonal polynomials defined by 2nd order differential equations that fall outside the classical families of Jacobi, Laguerre, and Hermite polynomials. Unlike the classical families, these new examples, called exceptional orthogonal polynomials, feature non-standard polynomial flags; the lowest degree polynomial has degree m > 0. In this paper we review the classification of codimension m = 1 exceptional polynomials, and give a novel, compact proof of the fundamental classification theorem for codimension 1 polynomial flags. As well, we describe the mechanism or rational factorizations of 2nd order operators as the analogue of the Darboux transformation in this context. We finish with the example of higher codimension generalization of Jacobi polynomials and perform the complete analysis of parameter values for which these families have non-singular weights.

Research Projects

Organizational Units

Journal Issue

Description

© Amer Mathematical Soc. Conferencia: Jairo Charris Seminar on Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics (2010 . Santa Marta, Colombia). We thank Ferenc Tookos for useful comments and suggestions. The research of DGU was supported in part by MICINN-FEDER grant MTM2009-06973 and CUR-DIUE grant 2009SGR859. The research of NK was supported in part by NSERC grant RGPIN 105490-2004. The research of RM was supported in part by NSERC grant RGPIN-228057-2004.

Unesco subjects

Keywords