Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On orthogonal polynomials spanning a non-standard flag

dc.book.titleAlgebraic aspects of darboux transformations, quantum integrable systems and supersymmetric quantum mechanics
dc.contributor.authorGómez-Ullate Otaiza, David
dc.contributor.authorKamran, Niky
dc.contributor.authorMilson, Robert
dc.date.accessioned2023-06-20T05:46:59Z
dc.date.available2023-06-20T05:46:59Z
dc.date.issued2012
dc.description© Amer Mathematical Soc. Conferencia: Jairo Charris Seminar on Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics (2010 . Santa Marta, Colombia). We thank Ferenc Tookos for useful comments and suggestions. The research of DGU was supported in part by MICINN-FEDER grant MTM2009-06973 and CUR-DIUE grant 2009SGR859. The research of NK was supported in part by NSERC grant RGPIN 105490-2004. The research of RM was supported in part by NSERC grant RGPIN-228057-2004.
dc.description.abstractWe survey some recent developments in the theory of orthogonal polynomials defined by differential equations. The key finding is that there exist orthogonal polynomials defined by 2nd order differential equations that fall outside the classical families of Jacobi, Laguerre, and Hermite polynomials. Unlike the classical families, these new examples, called exceptional orthogonal polynomials, feature non-standard polynomial flags; the lowest degree polynomial has degree m > 0. In this paper we review the classification of codimension m = 1 exceptional polynomials, and give a novel, compact proof of the fundamental classification theorem for codimension 1 polynomial flags. As well, we describe the mechanism or rational factorizations of 2nd order operators as the analogue of the Darboux transformation in this context. We finish with the example of higher codimension generalization of Jacobi polynomials and perform the complete analysis of parameter values for which these families have non-singular weights.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN-FEDER
dc.description.sponsorshipCUR-DIUE
dc.description.sponsorshipNSERC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30804
dc.identifier.doi10.1090/conm/563/11164
dc.identifier.isbn978-0-8218-7584-1
dc.identifier.officialurlhttp://dx.doi.org/10.1090/conm/563/11164
dc.identifier.relatedurlhttp://www.ams.org/
dc.identifier.relatedurlhttp://arxiv.org/abs/1101.5584
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45574
dc.issue.number563
dc.language.isoeng
dc.page.total21
dc.publisherAmer Mathematical Soc
dc.relation.ispartofseriesContemporary mathematics
dc.relation.projectIDMTM2009-06973
dc.relation.projectID2009SGR859
dc.relation.projectIDRGPIN 105490-2004
dc.relation.projectIDRGPIN-228057-2004
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordShape-invariant potentials
dc.subject.keywordQuasi-exact solvability
dc.subject.keywordDifferential-equation
dc.subject.keywordLaguerre-polynomials
dc.subject.keywordSystems
dc.subject.keywordSupersymmetry
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleOn orthogonal polynomials spanning a non-standard flag
dc.typebook part
dcterms.references[1] J. Aczel, Eine Bemerkung über die Charakterisierung der klassichen orthogonale Polynome, Acta Math. Acad.Sci. Hungar 4 (1953), 315-321. [2] R.A. Askey and J.A. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Memoirs American Mathematical Society No. 319 1985. [3] F.V. Atkinson and W.N. Everitt, Orthogonal polynomials which satisfy second order differential equations. E. B. Christoffel (Aachen/Monschau, 1979), pp. 173–181, Birkhäuser, Basel-Boston, Mass., 1981. [4] Erdélyi A et al. Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953 [5] S. Bochner, Über Strum-Liouvillesche Polynomsysteme, Math. Z. 29 (1929), 730-736. [6] F. Cooper, A. Khare and U. Sukhatme, Supersymmetry in quantum mechanics World Scientific, Singapore 2001 [7] P. Crooks and R. Milson, On projective equivalence of univariate polynomial subspaces, SIGMA 5 (2009), paper 107 [8] P. A. Deift, Applications of a commutation formula, Duke Math. J. 45 (1978), 267–310 [9] S. Y. Dubov, V. M. Eleonskii, and N. E. Kulagin, Equidistant spectra of anharmonic oscillators, Sov. Phys.JETP 75 (1992) 47–53 [10] W. N. Everitt, K. H. Kwon, L. L. Littlejohn and R. Wellman, Orthogonal polynomial solutions of linear ordinary differential equations, J. Comput. Appl. Math 133 (2001), 85-109. [11] W. N. Everitt, L. L. Littlejohn, R. Wellman, The Sobolev orthogonality and spectral analysis of the Laguerre polynomials L −k n for positive integers k, J. Comput. Appl. Math. 171 (2004), 199–234. [12] J. Feldmann, On a characterization of classical orthogonal polynomials, Acta Sc. Math. 17 (1956), 129-133. [13] L.E. Gendenshtein, Derivation of exact spectra of the Schrodinger equation by means of supersymmetry, JETP Lett. 38 (1983) 356-359. [14] F. Gesztesy and G. Teschl, On the double commutation method, Proc. Amer. Math. Soc. 124 1831–1840 (1996) [15] J. Gibbons and A.P. Veselov, On the rational monodromy-free potentials with sextic growth, J. Math. Phys. (50) (2009) 013513, 25 pages. [16] D. Gómez-Ullate, N. Kamran and R. Milson, The Darboux transformation and algebraic deformations of shape-invariant potentials, J. Phys. A 37 (2004), 1789–1804. [17] D. Gómez-Ullate, N. Kamran and R. Milson, Supersymmetry and algebraic Darboux transformations, J. Phys. A 37 (2004), 10065–10078. [18] D. Gómez-Ullate, N. Kamran and R. Milson, Quasi-exact solvability and the direct approach to invariant subspaces. J. Phys. A, 38(9):2005–2019, 2005. [19] D. Gómez-Ullate, N. Kamran and R. Milson, Quasi-exact solvability in a general polynomial setting, Inverse Problems, 23 (2007) 1915-1942. [20] D. Gómez-Ullate, N. Kamran, and R. Milson, An extension of Bochner’s problem: exceptional invariant subspaces J. Approx. Theory 162 (2010) 987-1006. [21] D. Gómez-Ullate, N. Kamran, and R. Milson, An extended class of orthogonal polynomials defined by a Sturm-Liouville problem , J. Math. Anal. Appl. 359 (2009) 352–367. [22] D. Gómez-Ullate, N. Kamran, and R. Milson, Exceptional orthogonal polynomials and the Darboux transformation, J. Phys. A 43 (2010) 434016 [23] E. Hendriksen and H. van Rossum, Semiclassical orthogonal polynomials, in “Orthogonal polynomials and applications” (Bar-le-Duc, 1984), C. Brezinski et al Editors, 354–361, Lecture Notes in Math., 1171, Springer, Berlin, 1985. [24] M. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia in Mathematics, vol 98 Cambridge University Press, Cambridge, (2005). [25] R. Koekoek, P. Lesky, and R. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, Springer-Verlag, Berlin, 2010 [26] K. H. Kwon and L. L. Littlejohn, Classification of classical orthogonal polynomials, J. Korean Math. Soc. 34 (1997), 973-1008. [27] P. Lesky, Die Charakterisierung der klassischen orthogonalen Polynome durch Sturm-Liouvillesche Differentialgleichungen, Arch. Rat. Mech. Anal. 10 (1962), 341-352. [28] B. Midya and B. Roy, Exceptional orthogonal polynomials and exactly solvable potentials in position dependent mass Schr¨odinger Hamiltonians, Phys. Lett. A 373(45) (2009) 4117– 4122 [29] M. Mikolás, Common characterization of the Jacobi, Laguerre and Hermitelike polynomials(in Hungarian), Mate. Lapok 7 (1956), 238-248. [30] C. Quesne, Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry, J. Phys. A 41 (2008) 392001–392007 [31] C. Quesne, Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics, SIGMA 5 (2009), 084, 24 pages. [32] M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self- Adjointness, Academic Press, New York-London, 1975. [33] A. Ronveaux, Sur l’´equation diff´erentielle du second ordre satisfaite par une classe de polynômes orthogonaux semi-classiques, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 5, 163–166. [34] A. Ronveaux and F. Marcellán, Differential equation for classical-type orthogonal polynomials, Canad. Math. Bull. 32 (1989), no. 4, 404–411. [35] S. Odake and R. Sasaki, Infinitely many shape invariant potentials and new orthogonal polynomials, Phys. Lett. B 679 (2009) 414–417. [36] S. Odake and R. Sasaki, Infinitely many shape invariant discrete quantum mechanical systems and new exceptional orthogonal polynomials related to the Wilson and Askey-Wilson polynomials, Phys. Lett. B 682 (2009), 130–136. [37] S. Odake and R. Sasaki, Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials, J. Math. Phys. 51 (2010), 053513, 9 pages. [38] S. Odake and R. Sasaki, Another set of infinitely many exceptional (Xℓ) Laguerre polynomials, Phys. Lett. B 684 (2010), 173–176. [39] R. Sasaki, S. Tsujimoto, and A. Zhedanov, Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux- Crum transformations, J. Phys. A 43 (2010), 315204, 20 pages [40] C. V. Sukumar, Supersymmetric quantum mechanics of one-dimensional systems, J. Phys. A 18 (1985) 2917-2936. [41] G. Szegó, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc., Providence RI, 1975, Fourth Edition. [42] T. Tanaka, N-fold Supersymmetry and quasi- solvability associated with X2- Laguerre polynomials, arXiv:0910.0328 [math-ph] [43] V. B. Uvarov, The connection between systems of polynomials that are orthogonal with respect to different distribution functions, USSR Computat. Math. and Math. Phys. 9 (1969), 25–36. [44] A. Zettl, Sturm-Liouville theory, Mathematical Surveys and Monographs, 121, Amer. Math. Soc., Providence, RI, 2005
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomez-ullate10preprint.pdf
Size:
263.59 KB
Format:
Adobe Portable Document Format