Yang-Mills model for centrally extended 2D gravity

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Amer Physical Soc
Google Scholar
Research Projects
Organizational Units
Journal Issue
A Yang-Mills theory linear in the scalar curvature for two-dimensional gravity with symmetry generated by the semidirect product formed with the Lie derivative of the algebra of diffeomorphisms with the twodimensional Abelian algebra is formulated. As compared with dilaton models, the role of the dilaton is played by the dual field strength of a U(1) gauge field. All vacuum solutions are found. They are either black holes or have constant scalar curvature. Those with constant scalar curvature have constant dual field strength. In particular, solutions with vanishing cosmological constant but nonzero scalar curvature exist. In the conformal-Lorenz gauge, the model has a conformal field theory interpretation whose residual symmetry combines holomorphic diffeomorphisms with a subclass of U(1) gauge transformations while preserving two-dimensional de Sitter and anti-de Sitter boundary conditions. This is the same symmetry as in Jackiw-Teitelboim-Maxwell gravity considered by Hartman and Strominger. It is argued that this is the only nontrivial Yang-Mills model linear in the scalar curvature that exists for real Lie algebras of dimension four.
© Amer Physical Soc 2022 The authors wish to thank Thomas Hartman for correspondence. This work was partially funded by the Spanish Ministry of Education and Science through Grant No. PGC2018-095382-B-I00. S. A. acknowledges Universidad Complutense Madrid and Banco Santander for support through a predoctoral fellowship.
Unesco subjects