Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Euler-Poincaré reduction on principal bundles

Loading...
Thumbnail Image

Full text at PDC

Publication date

2001

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Kluwer Academic
Citations
Google Scholar

Citation

Abstract

Let G be a Lie group and let L:TG→R be a Lagrangian invariant under the natural action of G on its tangent bundle. Then L induces a function l:(TG)/G≅g→R called the reduced Lagrangian, g being the Lie algebra of G. As is well known, the Euler-Lagrange equations defined by L for curves on G are equivalent to a new kind of equation for l for the reduced curves in the Lie algebra g. These equations are known as the Euler-Poincaré equations. In the paper under review, the authors extend the idea of the Euler-Poincaré reduction to a Lagrangian L:J1P→R defined on the first jet bundle of an arbitrary principal bundle π:P→M with structure group G. The Lagrangian is assumed to be invariant under the natural action of G on J1P. Let l:(J1P)/G→R be the reduced Lagrangian. It is known that the quotient manifold (J1P)/G can be identified with the bundle of connections of π:P→M. The reduced variational problem has a nice geometrical interpretation in terms of connections. The authors study the compatibility conditions needed for reconstruction. In this framework the Euler-Poincaré equations do not suffice to reconstruct the Euler-Lagrange equations. Some extra conditions must be imposed, namely, the vanishing of the curvature of the critical sections. In the case of matrix groups this result has already been obtained [M. Castrillón López, T. S. Ratiu and S. Shkoller, Proc. Amer. Math. Soc. 128 (2000), no. 7, 2155–2164;]. In this paper the authors give a proof for general Lie groups. Moreover, they point out several facts concerning the reduced variational problem: its relation with the variational calculus with constraints, Noether's theorem for reduced symmetries, and the second variation formula.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections