Orderings and maximal ideals of rings of analytic functions.
dc.contributor.author | Díaz-Cano Ocaña, Antonio | |
dc.date.accessioned | 2023-06-20T09:33:08Z | |
dc.date.available | 2023-06-20T09:33:08Z | |
dc.date.issued | 2005 | |
dc.description.abstract | We prove that there is a natural injective correspondence between the maximal ideals of the ring of analytic functions on a real analytic set X and those of its subring of bounded analytic functions. By describing the maximal ideals in terms of ultrafilters we see that this correspondence is surjective if and only if X is compact. This approach is also useful for studying the orderings of the field of meromorphic functions on X. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | European Community’s Human Potential Programme | |
dc.description.sponsorship | RAAG | |
dc.description.sponsorship | GAAR | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15040 | |
dc.identifier.doi | 10.1090/S0002-9939-05-07848-2 | |
dc.identifier.issn | 1088-6826 | |
dc.identifier.officialurl | http://www.ams.org/journals/proc/2005-133-10/S0002-9939-05-07848-2/S0002-9939-05-07848-2.pdf | |
dc.identifier.relatedurl | http://www.ams.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49882 | |
dc.issue.number | 10 | |
dc.journal.title | Proceedings of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 2828 | |
dc.page.initial | 2821 | |
dc.publisher | America Mathematical Society | |
dc.relation.projectID | HPRN-CT-2001-00271 | |
dc.relation.projectID | BFM2002-04797 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Real analytic sets | |
dc.subject.keyword | Analytic functions | |
dc.subject.keyword | Maximal ideal | |
dc.subject.keyword | Ultrafilters | |
dc.subject.keyword | orderings. | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Orderings and maximal ideals of rings of analytic functions. | |
dc.type | journal article | |
dc.volume.number | 133 | |
dcterms.references | C. Andradas, E. Becker. A note on the real spectrum of analytic functions on an analytic manifold of dimension one. Lect. Notes Math. 1420 (1990), 1–21. C. Andradas, L. Br¨ocker, J. M. Ruiz. Constructible sets in real geometry. Springer- Verlag, Berlin, 1996. J. Bochnak, M. Coste, M.-F. Roy. Real Algebraic Geometry. Springer-Verlag, Berlin, 1998. A. Castilla. Sums of 2n-th powers of meromorphic functions with compact zero set. Lect. Notes Math. 1524 (1991), 174–177. A. Castilla. Artin-Lang property for analytic manifolds of dimension two. Math. Z. 217 (1994), 5–14. A. Castilla. Propiedad de Artin-Lang para variedades anal´ıticas de dimensi´on dos. Ph. D. Thesis, Universidad Complutense de Madrid (1994). A. D´ıaz-Cano, C. Andradas. Complexity of global semianalytic sets in a real analytic manifold of dimension 2. J. reine angew. Math. 534 (2001), 195–208. L. Gillman, M. Jerison. Rings of continuous functions. Van Nostrand, Princeton, 1960. M. Hirsch. Differential Topology. Springer-Verlag, 1976. P. Jaworski. The 17-th Hilbert problem for noncompact real analytic manifolds. Lecture Notes Math. 1524 (1991), 289–295. K. Kurdyka, G. Raby. Densit´e des ensembles sous-analytiques. Ann. Inst. Fourier 39(1989), 753–771. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 134ad262-ecde-4097-bca7-ddaead91ce52 | |
relation.isAuthorOfPublication.latestForDiscovery | 134ad262-ecde-4097-bca7-ddaead91ce52 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- 53ea5d090cf2fb1b9b677a5f.pdf
- Size:
- 159.46 KB
- Format:
- Adobe Portable Document Format