Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Antifungal effects of phenolic extract from industrial residues of Aloe vera

Loading...
Thumbnail Image

Full text at PDC

Publication date

2019

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Consejo Superior de Investigaciones Científicas
Citations
Google Scholar

Citation

Pintos, B., Martín-Calvarro, L., Piñón, D., Esteban, A., Tello, M. L., Pérez-Urria, E., & Gómez-Garay, A. (2019). Antifungal effects of phenolic extract from industrial residues of Aloe vera. Spanish Journal of Agricultural Research, 16(4), e1010. https://doi.org/10.5424/sjar/2018164-12480

Abstract

This research is concerned with the fungicidal properties of the phenolic extract from industrial residues of Aloe vera used for antifungal treatment of various plant pathogens (Fusarium oxysporum f. sp. radicis-lycopersici, Phaeomoniella chlamydospora, Phaeoacremonium aleophilum, and Sporisorium scitamineum). Six phenolic compounds were identified in this extract from A. vera cortex: aloesin, α-barbaloin, chromone X, isoaloeresin D, β- barbaloin and aloeresin E. Phenolic extract was added to PDA medium at 20 concentrations from 0.32% to 10% and the growth of four different plant pathogenic fungi was tested. Fungal inhibition was calculated in order to evaluate the antifungal efficacy of phenolic extract against pathogens. Inhibition of Sporisorium scitamineum hyphal growth was observed after treatment with the phenolic extract at concentrations higher than 2.5% and a fungistatic effect with a 58.2% mycelia growth inhibition was detected at 3% extract concentration. Inhibition of P. chlamydospora and P. aleophilum hyphal growth was observed at concentrations higher than 4% and 3% respectively. A fungistatic effect with a 71.65% and a 19.87% mycelia growth inhibition was detected at 4.5% and 3.5% extract concentration respectively. About F. oxysporum f. sp. radicis-lycopersici, inhibition of hyphal growth was observed at concentrations higher than 2.5% and a fungistatic effect with a 32.07% mycelia growth inhibition was detected at 3% extract concentration. The results indicate that the tested extract possess antifungal activities against these pathogens at various concentration levels and could be used as a potential natural fungicide in order to control fungi pathogens providing a new use for the A. vera industrial residues.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections