Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Measure and integration in bornological spaces. (Spanish: Medida e integración en espacios bornológicos).

Loading...
Thumbnail Image

Full text at PDC

Publication date

1981

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Real Academia de Ciencias Exactas, Físicas y Naturales
Citations
Google Scholar

Citation

Abstract

Let E be a vector space with a convex "bornology'', in the sense of H. Hogbe-Nlend [Théorie des bornologies et applications, Lecture Notes in Math., 213, Springer, Berlin, 1971. If Ω is a set and Σ a σ -algebra of P(Ω) , a map m:Σ→E such that m(∅)=0 is called a bornological measure if, for any sequence A n ∈Σ of pairwise disjoint sets, one has (⋃ ∞ 1 A n )=∑ ∞ 1 m(A n ) for the Mackey convergence. The aim of the paper is to give conditions for the existence of a bounded absolutely convex set B such that, if m(Σ)⊂R ⋅ B , then m is a classical vector measure with values in E B (=R ⋅ B normed with the gauge of B ); for instance, if E B is a Banach space: (a) l ∞ ⊄E B or (b) F closed and separable in E B implies that F∩B is closed for σ(E,E × ) , where E × is the set of bounded elements of E ∗ . Then the author gives a notion of a measurable function f with respect to a bornology as above, and gives sufficient conditions to have f Bochner measurable with respect to some E B as above.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections