Measure and integration in bornological spaces. (Spanish: Medida e integración en espacios bornológicos).
dc.contributor.author | Bombal Gordón, Fernando | |
dc.date.accessioned | 2023-06-21T02:03:45Z | |
dc.date.available | 2023-06-21T02:03:45Z | |
dc.date.issued | 1981 | |
dc.description.abstract | Let E be a vector space with a convex "bornology'', in the sense of H. Hogbe-Nlend [Théorie des bornologies et applications, Lecture Notes in Math., 213, Springer, Berlin, 1971. If Ω is a set and Σ a σ -algebra of P(Ω) , a map m:Σ→E such that m(∅)=0 is called a bornological measure if, for any sequence A n ∈Σ of pairwise disjoint sets, one has (⋃ ∞ 1 A n )=∑ ∞ 1 m(A n ) for the Mackey convergence. The aim of the paper is to give conditions for the existence of a bounded absolutely convex set B such that, if m(Σ)⊂R ⋅ B , then m is a classical vector measure with values in E B (=R ⋅ B normed with the gauge of B ); for instance, if E B is a Banach space: (a) l ∞ ⊄E B or (b) F closed and separable in E B implies that F∩B is closed for σ(E,E × ) , where E × is the set of bounded elements of E ∗ . Then the author gives a notion of a measurable function f with respect to a bornology as above, and gives sufficient conditions to have f Bochner measurable with respect to some E B as above. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17974 | |
dc.identifier.issn | 0034-0596 | |
dc.identifier.officialurl | http://www.rac.es/4/4_7_1.php?pid=Revistas:REV_20091030_00424&pageNum=1 | |
dc.identifier.relatedurl | http://www.rac.es/0/0_1.php | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64747 | |
dc.issue.number | 1 | |
dc.journal.title | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid | |
dc.language.iso | spa | |
dc.page.final | 137 | |
dc.page.initial | 115 | |
dc.publisher | Real Academia de Ciencias Exactas, Físicas y Naturales | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | bornological spaces | |
dc.subject.keyword | Radon-Nikodym theorem | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Measure and integration in bornological spaces. (Spanish: Medida e integración en espacios bornológicos). | |
dc.type | journal article | |
dc.volume.number | 75 | |
dcterms.references | BOMBAL GORDON,F.(1981).El teorema de Radon-Nikodym en espacios bornológicos. Rev. R. Acad. Ci. Madrid,75, 139-154. CHI, G. Y. H. (1976). On the Radon-Nikodym theorem in locally convex spaces, en «Measure theory», Lect. Notes in Math., n.° 541. Springer, Berlin. DIESTEL, J. (1972). The Radon-Nikodym property and thecoincidence of integral and nuclear operators. Rev. Roum. Math., 17, 1611-1620. DIESTEL, J. and UHL, J. Jr. (1977). Vector measures. Math. Surveys, 15, Amer. Math. Soc., Providence, Rhode Island. GROTHENDIECK, A. (1954). Sur les espaces (F) et (DF). Summa- Brasiliensis, 5, fase. 6, 57-122. GROTHENDIECK, A. (1973). Topological Vector Spaces. Gordon and Breach, N. Y. HOGBE-NLEND,H.(1971).Théorie des bornologies et applications.Lect.Notes in Math.,n.°213. Springer, Berlin. KOTHE, G. (1969). Topological Vector Spaces I. Springer,.New York. MC ARTHUR, C. W. (1967). On a theorem of Orlicz and Pettis. Pac. J. of Math., 22, 297-302. MOSCATELLI, V. B. (1974). Bases in bornological spaces. Studio-Math., 50, 251-264. PIETSCH, A. (1972).Nuclear locally convex spaces, Springer,.Berlin. ScHAEFER, H. H. (1971). Topological vector spaces. Springer,.Berlin. SCHWARTZ, L. (1973). Radon Measures on arbitrary topological spaces and Cylindrical measures. Tata Inst. Oxford Univ. Press. THOMAS, E. (1976). Totally summable functions with values in locally convex spaces. En «Measure theory», Lect. Notes in Math., n.° 541. Springer, Berlin. TWEDDLE, I. (1968). Weak compactness in locally convex spaces. Glasgow Math. J., 9, 123-127. TWEDDLE, I. (1970). Vector-valued measures. Proc. London Math. Soc. (3), 20, 469-489. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1