Absence of dissipative solutions of the schrodinger and klein-gordon equations with logarithmic
dc.contributor.author | Brito, Ricardo | |
dc.contributor.author | Cuesta, José Antonio | |
dc.contributor.author | Fernández-Rañada, Antonio | |
dc.date.accessioned | 2023-06-20T18:49:30Z | |
dc.date.available | 2023-06-20T18:49:30Z | |
dc.date.issued | 1988-04-11 | |
dc.description | © Elsevier Science Publishers B.V. We are grateful to Professor A. Alvarez and Professor L. Vázquez for discussions. This work has been partially supported by Dirección General de Investigación Científica y Técnica, under grant PB86-0005. | |
dc.description.abstract | It is shown that neither the Schrödinger equation nor the Klein-Gordon one with logarithmic nonlinearities have dissipative solutions. In the case of one-dimensional space, numerical experiments with different Cauchy data, in the nonrelativistic case, lead always to final states consisting only in oscillating gaussons. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Dirección General de Investigación Científica y Técnica | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22655 | |
dc.identifier.doi | 10.1016/0375-9601(88)90191-0 | |
dc.identifier.issn | 0375-9601 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/0375-9601(88)90191-0 | |
dc.identifier.relatedurl | http://gisc.uc3m.es/~cuesta/PDFs/PLA_128_360_88.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58708 | |
dc.issue.number | 06-jul | |
dc.journal.title | Physics Letters A | |
dc.language.iso | eng | |
dc.page.final | 366 | |
dc.page.initial | 360 | |
dc.publisher | Elsevier | |
dc.relation.projectID | PB86-0005 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 536 | |
dc.subject.ucm | Termodinámica | |
dc.subject.unesco | 2213 Termodinámica | |
dc.title | Absence of dissipative solutions of the schrodinger and klein-gordon equations with logarithmic | |
dc.type | journal article | |
dc.volume.number | 128 | |
dcterms.references | 1. I. Bialynicki-Birula and I. Mycielski, Ann. Phys. (NY) 100 (1976) 65. 2. J. Oficjalski and I. Bialynicki-Birula, Acta Phys. Pol. B 9 (1978) 759. 3. A. Shimony, Phys. Rev. A 20 (1979) 394. 4. C. G. Shull, D. K. Atwood, J. Arthur and M. A. Horne, Phys. Rev. Lett. 44 (1980) 765. 5. R. Gähler, A. G. Klein and A. Zeilinger, Phys. Rev. A 23 (1981) 1611. 6. E. F. Hefter, Phys. Rev. A 32 (1985) 1201. 7. Th. Cazenave and A. Haraux, Ann. Fac. Sci. Univ. Toulouse 2 (1980) 21. 8. Th. Cazenave, Nonlin. Anal. Theory Methods Appl. 7, No. 10 (1983) 1127. 9. Ph. Blanchard, J. Stubbe and L. Vázquez, Ann. Inst. Henri Poincaré, to be published. 10. T. F. Morris, Phys. Lett. B 76 (1978) 337. 11. J. Werle, Phys. Lett. B 71 (1977) 367 12. A. Goldberg, H. M. Schey and J. L. Schwartz, Am. J. Phys. 35 (1967) 177. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1