Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Absence of dissipative solutions of the schrodinger and klein-gordon equations with logarithmic

dc.contributor.authorBrito, Ricardo
dc.contributor.authorCuesta, José Antonio
dc.contributor.authorFernández-Rañada, Antonio
dc.date.accessioned2023-06-20T18:49:30Z
dc.date.available2023-06-20T18:49:30Z
dc.date.issued1988-04-11
dc.description© Elsevier Science Publishers B.V. We are grateful to Professor A. Alvarez and Professor L. Vázquez for discussions. This work has been partially supported by Dirección General de Investigación Científica y Técnica, under grant PB86-0005.
dc.description.abstractIt is shown that neither the Schrödinger equation nor the Klein-Gordon one with logarithmic nonlinearities have dissipative solutions. In the case of one-dimensional space, numerical experiments with different Cauchy data, in the nonrelativistic case, lead always to final states consisting only in oscillating gaussons.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDirección General de Investigación Científica y Técnica
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22655
dc.identifier.doi10.1016/0375-9601(88)90191-0
dc.identifier.issn0375-9601
dc.identifier.officialurlhttp://dx.doi.org/10.1016/0375-9601(88)90191-0
dc.identifier.relatedurlhttp://gisc.uc3m.es/~cuesta/PDFs/PLA_128_360_88.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58708
dc.issue.number06-jul
dc.journal.titlePhysics Letters A
dc.language.isoeng
dc.page.final366
dc.page.initial360
dc.publisherElsevier
dc.relation.projectIDPB86-0005
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleAbsence of dissipative solutions of the schrodinger and klein-gordon equations with logarithmic
dc.typejournal article
dc.volume.number128
dcterms.references1. I. Bialynicki-Birula and I. Mycielski, Ann. Phys. (NY) 100 (1976) 65. 2. J. Oficjalski and I. Bialynicki-Birula, Acta Phys. Pol. B 9 (1978) 759. 3. A. Shimony, Phys. Rev. A 20 (1979) 394. 4. C. G. Shull, D. K. Atwood, J. Arthur and M. A. Horne, Phys. Rev. Lett. 44 (1980) 765. 5. R. Gähler, A. G. Klein and A. Zeilinger, Phys. Rev. A 23 (1981) 1611. 6. E. F. Hefter, Phys. Rev. A 32 (1985) 1201. 7. Th. Cazenave and A. Haraux, Ann. Fac. Sci. Univ. Toulouse 2 (1980) 21. 8. Th. Cazenave, Nonlin. Anal. Theory Methods Appl. 7, No. 10 (1983) 1127. 9. Ph. Blanchard, J. Stubbe and L. Vázquez, Ann. Inst. Henri Poincaré, to be published. 10. T. F. Morris, Phys. Lett. B 76 (1978) 337. 11. J. Werle, Phys. Lett. B 71 (1977) 367 12. A. Goldberg, H. M. Schey and J. L. Schwartz, Am. J. Phys. 35 (1967) 177.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brito41preprint.pdf
Size:
298.81 KB
Format:
Adobe Portable Document Format

Collections